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Abstract

Panel flutter is a form of dynamic aeroelastic instability resulting from the in-

teraction between motion of a aircraft structural panel and the aerodynamic loads

exerted on that panel by air flowing past one of the faces. It differs from lifting-

surface flutter in the sense that it is not usually catastrophic, the panel's motion

being limited by nonlinear membrane stresses produced by tile transverse displace-

ment. Above some critical airflow condition, the linear instability grows to a limit

cycle.

The present investigation studies panel flutter in an aerodynamic regime known

as "free molecule flow", wherein intermolecular collisions can be neglected and loads

are caused by interactions between individual molecules and the bounding surface.

After collision with the panel, molecules may be refected speculmly or rcemittcd in

diffuse fashion. Two parameters characterize this process: the "momentum accom-

modation coefficient", which is the fraction of the specularly reflected m()lccules; and

the ratio between the panel temperature and that of the flee airstream. This mo&q

is relevant to the case of hypersonic flight vehicles traveling at very high altitudes

and especially for panels oriented paralM to the airstremn or in the vehicle's lee.

Under these conditions the aerodynamic shear stress turns out to be considerably

larger than the surface pressures, and shear effects must be included in the model.

This is accomplished by means of distributed longitudinal and bending loads. The

former can cause the panel to buckle. In the example of a simply-supported panel,

it turns out that the second mode of free vibration tends to dolninatc the ttuttcr

solution, which is carried out by a Galerkiu attalysis.

Several parametric studies are presented. They include the eflbcts of 1) teml_('r-

ature ratio; 2) nmmentum accommodation coefficient; 3) spring lmramctcrs, which

are associated with how the panel is connected to adjacent structures; 4) a l)mam -

eter which relates compressive end load to its value which would cause classical

column buckling; 5) a parameter proportional to the pressure differential between

the front and back faces; and 6) initial curvature. The research is conq)letcd t)v an

investigation into the possibility of accounting for moh_cllhu" c(_llisions, which l_r()vcs

to be infeasible given the speeds of current mainfl'alne SUl_ercomlmters.

ili

PRECEDING PAGE BLANK I',!OT FPLMED





Contents

Abstract iii

Contents v

List of Tables vii

List of Figures ix

Nomenc lat ure xi i i

1 INTRODUCTION 1

1.1 Physical Nature of the Problenl ..................... 2

1.2 Methods of Analysis ........................... 4

1.3 Present Application ........................... 10

2 STRUCTURAL MODEL 12

2.1 Equations of Motion ........................... 1'2

2.2 Initial Curvature or Impcrfcctious ................... 19

2.3 Role of Structural Damping ....................... 20

2.4 Galerkin's Solution ............................. 23

3 AERODYNAMIC MODELS 24

3.1 Continuum Flow ............................. 24

v

PRECEDING P-'_GE 5LAi_K NOT I"IL_ED



3.2 Rarefied Flow ............................... 26

3.2.1 Free-Molecule Regime: Quasi-Steady Approximation ..... 27

3.2.2 Transition Regime: Particle Simulation Methods ....... 36

RESULTS

4.1

4.2

4.3

4.4

4.5

4.6

39

Nominal Configuration .......................... 41

Initial Conditions: Nonuniqueness ................... 48

Effects of Aerodynamic Parameters ................... 55

Effects of Structural Parameters .................... 59

Initial Curvature Effects ......................... 69

Particle Simulation M(,t,h()d Apl)licat, ion ................ 75

5 FINAL REMARKS 80

A GALERKIN INTEGRALS AND COEFFICIENTS 84

A.1 Sine and Cosinc Intcgrals ........................ 84

A.2 Galerldn Coefficients ........................... 86

B LONGITUDINAL SPRINGS EFFECTS 9O

BIBLIOGRAPHY 92

vi



List of Tables

Variation with p of the number of chords traveled to achieve a limit

cycle solution: ._ Moo = 10 a and T_ol = 10 ................ 76

Variation with tz of CPU time requirements (days) to achieve a limit

cycle solution: £ ._'/_ = 10 a, T_ol = 10, and 100 ceils .......... 78

Variation with # of CPU time requirements (days) to achieve a limit

cycle solution: .Xk.l_ = 10 a, 7-_ol = 10, and 200 cells .......... 78

vii





List o f Figures

10

11

Two-dimensional panel with initial curvature .............. 13

Correlation of predicted clamping ratio for 3 = 0 with Zener equation. 22

Reference frames for the quasi-steady approximation .......... 29

Time history of the first generalized coordinate q1: nominal con-

figuration, six-mode solution, /_ = 312.3 and ql(0) = 0.01 [six mode

representation, with all zero initial conditions except for ql(0)] .... 43

Variation of limit cycle characteristics for different free-molecule

models: nominal configuration and six-mode solution (see text for

label definitions) .............................. 45

Bifurcation diagram: convergence study for nominal configuration. 46

Phase portrait of generalized coordinates: convergence study for

nominal configuration (numbers identify the trajectories of different

degrees of fl'eedom) ............................ 47

Panel displacement at the points in time of maximum deflections:

nominal configuration, six-mode solution and )_ = 450 ......... 48

Time histories of the first generalized coordinate qv nominal config-

uration, )_ = 312.3 and zero structural damping ............ 49/50

Phase portraits of the first generalized coordinate ql: nominal con-

figuration, A = 312.3 and zero structural damping ........... 52/53

Phase portraits of the generalized coordinates: nominal configuration

and _'1 = 0.01 (numbers identify the trajectories of different degrees

of freedom) ................................. 54

ix



12 Effect of structural damping on the flutter characteristics: nominal

configuration ................................ 56

13 Influence of the temperature ratio O on the linear flutter parameter

,_cr, and comparison with piston theory results ............. 57

14 Influence of the momentunl accomodation coefficient c_m on the linear

flutter parameter Act ........................... 58

15 Influence of the Mach number Moo on the linear flutter parameter Act. 59

16 Influence of the spring support parameters c_k, on the linear flutter

parameter Act ............................... 60

17 Influence of the temperature ratio O in the flutter boundaries when

the spring support parameters o_k, are varied .............. 62

18 Influence of the applied compression parameter R_ on the linear flut-

ter parameter A_r ............................. 63

19 Influence of the applied compression parameter R_ in the amplitude

of the solution ............................... 64

20 Time history of the first generalized coordinate ql for R_ = - Szr2/3

and )_ = 92.656 ............................... 65

21 Time history ot_ the first generalized coordinate qi for R_ = - 10rr2/3

and A = 93.704. " 65

22 Influence of the temperature ratio O in the stability boundaries when

the applied compression parameter R_ is varied ............ 67

23 Influence of the temperature ratio O in the flutter boundaries when

the pressure differential parameter Pz is varied ............. 68

24 Influence of the pressure differential parameter P_ on the static de-

flection at the linear flutter condition .................. 6!!

25 Influence of the temperature ratio O in the limit-cycle amplitude for

different values of R,: Pz = 0 and ak, = 1 ................ 7,1

26 Bifurcation diagrams for H/h = 0.5 ................... 71

27 Static deflection of parabolic panel for H/h = 0.5 ........... 7'2

28 Static deflection of sinusoidal panel for H/h = 0.5 ........... 73

29 Bifurcation diagrams for H/h = 1.0 ................... 74



30 Bifurcation diagrams for H/h = 2.0 ................... 75

x±





Nomenclature

a

c

Ai

D

E

f

f

fMAX

h

H

ki

I{n

M,N,Q

_t

H

P

l)z,Pz

q

= panel length

= velocity vector

= coefficients of nondimensional aerodynamic loads

= Eh3/12(1-v _) (panelstiffness)

= modulus of elasticity

= frequency (Hz)

= f_/ppha4/D (nondimensional frequency)

= Maxwellian distribution of thermal velocity

= panel thickness

= maximum height of the initially curved panel

= spring constants

= Knudsen number

= molecule mass

= distributed bending moment

= bending inoment, axial stress force, and shear force resultants

= Math number

= p/rn (number density)

= applied inplane force

= number flux of molecules

= aerodynalnic 1)rcssure

= distributed loads in the longitudinal and normal directions

= nondinlensional static loads

=- poo U_/2 (dynamic pressure)

xiii



q?l

R

R_

8

t

T

T

th

Uoc

1u

w0

H/-

3Y_ Z

(l' k

(f ,n

fl

3'

Fo

g

(-)

t¢

A

A_+, I;

/L

I/

= nth generalized coordinate

= gas constant

= N_a_/D (compression parameter)

- V/-7--/2 _loo (molecular speed ratio)

= time

= tenlperature

-- t _/D/pvha 4 (nondimensional time)

= h/a (thickness ratio)

= panel longitudinal deflection

= undisturbed flow speed

= panel transverse deflection

= initial undeformed shape of the panel midplane surface

=_ w/h

= r_th nondimensional mode shape

= longitudinal and normal coordinates fixed to the undcfornacd panel

= coefficient of thermal expansion

= hia/(hia+Eh) (springparan_eters)

= momentum accommodation coefficient

- 1/2RT

= ratio of specific heats

= non(lhncnsi()nalinitia,1 curvature of the lmncl

= 1)ancl lnidl_lane strain change

= dmnping ratio

=_ Tp/T_ (temperature ratio)

= curvature change of the panel midplane surface

= 2 q a3/._Io+ D (dynamic pressure 1)arameter)

= normalized parameters: equations ($7)

=- poo a/pl) h (mass ratio)

----- P()lSSOll s ratio

:g'/(I,

xiv



p

T

02 _---

density

aerodynamic shea," stress

frequency

Subscripts

C7"

i =

]) =

peak =

critical

incident property

panel

peak deflection at the position _ = 0.75 of a given limit cycle

reflected or reemitted property

undisturbed flow

Superscripts, etc.

A

stat =

(.) =

(.), =

aerodynamic load

static load

nondimensional aerodynamic load

differentiation with respect to the variable that follows

the comma

XV





Chapter 1

INTRODUCTION

The panel flutter phenomenon is a form of dynamic instability resulting hom tlle

interaction of the motion of a panel with the aerodynamic loads generated by this

motion. It differs from classical flutter in the sense that it is not usually catastrophic,

the motion of the panel being limited by a nonlinear membrane stress induced by

tile transverse displacement. In general the flutter motion corresponds to a limit

cycle, which is not necessarily simple harmonic. This subject was intens('ly stu(li('d

during the 60's and 70's, and there are several works Iml_lished in th(, m'('a. The

definitive reference seems to be the 1975 monograph by Dowell[ll, while a m()r_ •

recent survey by Reed, Hanson and Alford [2] addresses the requirements directly

related to the National Aerospace Plane. Several other comprehensive historical

surveys of the liturature are available [31-[91, including Reference [9] which treats the

applications of the methods and results in design practice.

From a historical point of view, the first mention of 1)an('l flut.t('r al)p(-ars t.() l)_,

related with failures that had occurred on the German V2 missile (huiilA W(_rhl

War II [101. The problem was initially regarded as at_ itm'rcsting but a(_t flmda-

mentally different aspect of the general field of aeroelast.icity, ttowever, the us(, ()f

the standard methods for aeroelastic analysis (inainly linear methods at the time)

usually resulted in substantial disagreement between theoretical and experimental

data. This led to many studies, which disclosed that one of the main difficulties was

associated with the rather inaccurate techniques and uncontrolled test conditions
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(by present standards) of early experiments. On the other hand, from the theoret-

ical point of view, for some time it was not clear if the fluttering motion should be

modeled by "standing" waves or "traveling" waves. This may all have started from

the experience that flags, as well as skin panels made of thin paper, flutter at quite

low speeds and the motion resembles traveling waves [101.

These early difficulties have been overcome, and it has been demonstrated that

the data from theory and experiment are in satisfactory agreement for a wide range

of parameters. Among the aspects inherent to panel flutter which are not ade-

quately described by the usual linear, inviscid aeroelastic models are the structural

nonlinearities. As the panel bends it also stretches thereby inducing a tension in

the panel. As mentioned before, the flutter motion is a limit cycle, representing a

balance between the (unstable) linear panel and airloads and that induced tension,

which increases the effective panel stiffness. Viscous shear flow effects can also be

of importance, one of the reasons being that the boundary layer region next to the

panel can significantly modify the effective Math number and dynamic pressure

of the flow. Moreover, the shear stress itself may drastically modify the stability

boundary if it is larger or comparable to the pressure, as in the case of hypersonic

flow in a rarefied atmosphere.

1.1 Physical Nature of the Problem

There are several types of aeroelastic instabilities which may occur, and these may

be classified as static ("divergence") or dynamic ("flutter") instabilities. In the

case of panel flutter, divergence is generally associated with subsonic flow [111, while

flutter usually only happens for supersonic flows. However, it is possible for flutter

to occur in the subsonic regime in the case of a long panel resting on a contin-

uous elastic foundation [121. In fact, in this case a divergence-like instability sets

in first, but it is a very mild one and the panel response only becomes significant

when the airspeed approaches that for a flutter-like instability. The much larger

number of experimental studies in the supersonic flow regime [131-[191 reflects this



1.1. PHYSICAL NATURE OF THE PROBLEM [-_

fact that divergence is normally of less technological importance than flutter. Fi-

nally, it is worth pointing out that for flat panels, futter in the low supersonic flow

regime often corresponds to a single-degree-of-freedom instability, while for Math

numbers approximately larger than x/_ flutter results from coupling between modes

("frequency coalescence"). In the latter case it is clear that any i)aranmt(w that sig-

nificantly changes the panel modes and/or frequencies may have a significmlt effect

on the stability boundaries.

To better understand the physical nature of the problem, consider a wind-tunnel

experiment for a flat panel at supersonic speeds, with no applied in-plane loads.

Once the flow is established at some specified Mach number, the flutter 1)oundary

is searched for by increasing the fluid dynamic pressure q (the Math mmll_,'r is

held at the initial value). For small values of q below the flutter botmdary, rai_¢l¢_x_l

oscillations may be observed with dominant frequency components near the lower

panel natural frequencies: the panel is responding to pressure fluctuations in the

turbulent boundary layer, but it acts as a mechanical filter and responds primarily

to those frequencies in the pressure field near the structural natural frequencies. Th("

maximum oscillation amplitude is very small. When the flutter boundary is reached

at some critical dynamic pressure, q_, the oscillation becomes ess(_nt.ially p(,ri(_(lic,

with the amplitude increasing with any further increase in the' dynamic prcssiit_'.

Actually, the experimental value of q,_ is more a matter of d('finit.ion than a result

obtained from some precise measurement. An arbitrary but rcasomtt_lc con\'cnticm

is to define the stability boundary as a flutter band in dynamic prcssme [131. Th(:

upper limit can then be taken as the lowest value of q at which a sustained c)scillation

was observed with an amplitude magnification of 3 to 5 times over that obserw:d

at lower values of dynamic pressure. On the other hand, the lower limit may 1_'

assumed to correspond to the highest value of q for which no oscillations with rc,gulav

frequency or with a significant increase in response occurrc(l. The typical crr_,r in

q0_ is of the order of 10%.

There are very few works which tried to investigate failure mechanisms, but at

least two such mechanisms can be identified and have occurred in practice. The first

one has to do with the stress amplitude due to flutter exceeding the yield stress of the



CHAPTER 1. INTRODUCTION

panel material over a major portion of the structure. In this case the failure can be

catastrophic and very rapid. On the other hand, small stress levels can be associated

with fatigue failure. Actually, if the stress amplitude and frequency of oscillation

are known, one may use a conventional fatigue curve (stress vs. number of cycles

to failure) to estimate the fatigue life for the fluttering panel [20'21]. Interesting

enough, in a study by Dowell [201 it is shown that whereas a thimaer panel will

flutter at a lower dynamic pressure than a thicker one, it will be able to exceed

its flutter dynamic pressure by a greater amount (on a percentage basis) than a

thicker one for a given fatigue life. Another conclusion from the same work is that

a significant reduction in panel thickness may be possible if the panel is designed

for finite rather than infinite (no flutter) fatigue life. Results obtained by Xue and

Mei [211 agree with this finding.

1.2 Methods of Analysis

There are very few exact solutions, as it is always the case in any area, and most

of them use the method originally employed by Hedgepeth[22'231 This method

of solution is applicable to isotropic panels, as in the works by Hedgepeth, or to

sandwich/orthotropic panels [6]'[241-[261. Naturally, these analyses are valuable to

compare approximate solutions against, but they apply only to the linear problem

and were developed only by assuming high supersonic flows.

The most usual approximate method of analysis has been to apply Galerkin's

method [271 to the governing partial differential equation(s) of motion. It is worth

mentioning that the Galerkin method and the Rayleigh-Ritz method are equivalent

in most cases. The main differences are that the latter method involves the station-

arity of the total energy of the system, and that the so-called trial functions only

need to satisfy the forced boundary conditions, i.e., those conditions directly related

to the edges' displacements (deflection and slope). Also, some doubt was initially

cast on the use of the Galerkin method since spurious flutter results were obtained

for membrane flutter at high supersonic speeds when exact analyses showed no

flutter. This problem was studied by Ellen [28] who showed that the instability is
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always associated with the coalescence of the two highest eigenvalues. Since only the

lower eigenvalues have been determined with any accuracy, it becomes clear that at

any stage more terms must be taken to check the instability. Therefore an infinite

number of modes is in fact needed. This leads to the conclusion that, although a

finite value is found for qc_ for a given analysis, it has no meaning because of the

manner in which the instability occurs.

Once Galerkin's method is applied to the equation of motion, a system of ordi-

nary differential equations is obtained, which can be solved in several ways:

Characteristic equation: when the system of equations is linear, and in the ab-

sence of any structural damping and nonhomogeneous terms as pressurization

loads, it is possible to write: [29]-[40]

[M] {_/} + lit'] {q} + _ [A] {q} = {0} (I)

where [M], [K], and [A] are the inertia, stiffness and aerodynamic matrices,

respectively, and A is a nondimensional parameter proportional to the dynamic

pressure. Note that the aerodynamic matrix [A] may depend on Mach number,

as well as other parameters, depending on the aerodynamic theory being used.

The generalized displacements {q} are then assumed to be of the form {¢} e_'t,

where the frequency co is in general complex, i.e., co = a.'R + i col. After this

substitution, a nontrivial solution of equation (1) is obtained by setting the

determinant of the resultant coefficient matrix of {¢} equal to zero. This

yields the characteristic equation of the problem, which can be solved for co

if the parameter A is specified. For A = 0 the values of co can be shown to

correspond to the natural frequencies of the panel in a vacuum. Increasing A

changes the frequencies smoothly until a critical value (Ac_) is reached, when

two frequencies coalesce. Any further increase in ._ makes these frequencies

complex conjugate pairs, indicating that at least one of the modes of oscillation

is unstable, and thus defining the flutter boundary. Actually, this problem can

be looked upon as an eigenvalue problem and solved as such. This approach

seems to be numerically more efficient than to solve the characteristic equation
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itself if the total number of assumed modes is large. Finally, a traveling wave

solution can be obtained in a similar way, as in the papers by Dowell [41,421.

Harmonic balance method: this method is used when the system of equations

is nonlinear. It is based on the assumption that the flutter motion consists

of a steady periodic vibration, the fundamental harmonic being predominant,

that is, [43]-[46]

q_(t) _- aN sinwt + b,_ coswt . (2)

Substituting this into the system of equations and balancing terms of the

first harmonic (terms multiplying sin wt and cos wt), one obtains 2N algebraic

equations for the 2N + 2 unknowns {X} = {al, bl, a2 ... aN, by} T plus )_

and w. It should be recalled that neither Act nor the relation between )_ and

w are known beforehand. One may replace the first two coefficients al and

bl in {X} by )_ and w. Furthermore, since the phase angle is not important

in a steady-state solution, one can set al = 0 and bl equal to a certain small

number, which will set the general level of the vibration amplitude corre-

sponding to given values of _ and w. This reduces the system the equations

to a determinate form. It should be said that in the recent work by Yuen

and Lau [47] the so-called incremental harmonic balance method is used, with

higher harmonics being used to carry out the analyses.

The stability of the solution obtained may be studied by giving a small per-

turbation to the limit-cycle solution as follows:

q=(t) = [an + _n(t)] sinwt + [b,_ + r/,_(t)] coswt . (3)

Substituting this into the system of equations, and then studying the behavior

of _n(t) and r/,_(t), one can find out the stability of the limit-cycle solution.

Note that both variables are small perturbed functions, so that one can neglect

higher order terms and thus deal only with linear differential equations in (_(t)

and
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Perturbation method: this method obviously applies to nonlinear cases, the so-

lution being studied for values of A in the vicinity of the linear value/kcr. A

very clear application of this method can be found in the work by Morino [481

Time integration: in this case the generalized coordinates are obtained by direct

numerical integration [45],[491-[61], allowing the study of nonsimple harmonic

limit cycle oscillations or even chaotic motion [591. For a given initial distur-

bance, the panel motion may decrease with time (if the motion is stable in a

linear sense) or may increase with time until a nonlinear but "stable" limit

cycle is reached. One drawback of this approach is that if all damping is

eliminated from the system the limit cycle cannot be reached. This is a result

of treating the problem in the initial value formulation rather than seeking,

a priori, sustained oscillatory solutions. With regard to convergence, pres-

ence experience suggests that at least six modes must be used. However, if

in-plane or static pressure loadings induce a significantly large tension in the

panel, even more modes may be required. The number of modes required for a

given desired accuracy also increases if the panel aspect ratio (length/width)

increases.

Another method of analysis which became very common in tile last two decades

corresponds to the finite element method [621, recognition of the first application

usually being given to Olson [631 The basis of this method is to divide the panel in

several discrete elements, the displacement(s) at the nodal points (i.e., points where

different elements touch each other) being the unknown variables. One of the biggest

advantages of this method is that it can be applied to problems with practically any

geometrical boundary conditions on any or all the sides of the panel once the ele-

ments are defined. In the case of Galerkin's method a different set of functions must

be chosen to represent the deformations which correspond to each set of boundary

conditions. One issue regarding convergence in the case of plate elements has to do

with the quantities that are taken to be continuous across the interfaces between

elements. If the interface compatibility conditions are exactly satisfied the element
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is said to be "conforming", this being a desired property. A "non-conforming" el-

ement usually implies that normal slopes are discontinuous across the interfaces,

while "hyper-conforming" elements use components of the curvature tensor as gen-

eralized coordinates. In the latter case a degree of continuity that is not required by

compatibility is introduced, slowing down the convergence properties if compared

to a solution using the same mesh size and the same degree of polynomial approxi-

mation but strictly conforming[69]. Additionally, hyper-conforming elements raise

difficulties when elements of different thicknesses or Young moduli meet at a ver-

tex. Two other points that concern only the nonlinear formulation are discussed

by Sarma and Varadan [64]. The first one is related to the inclusion of the in-plane

displacement term in the strain-displacement relation, since the order of this term

is the same as the (w,,)2 term. Here w,, represents the derivative of the transverse

displacement with respect to a coordinate which runs along the panel. The second

point is associated with the applicability of the in-plane boundary conditions at the

element level and hence the evaluation of the nonlinear stretching forces. Gener-

ally speaking, the nonlinear stretching force is constant along the panel when tile

in-plane inertia forces are neglected, and there are no distributed in-plane loads.

For a two-dimensional panel with immovable edges this force at the system level is

proportional to the integral (w,,:)2 dx, which is evaluated along the panel length.

However, at the element level this is no longer true, since a term related to u,:_ must

be considered. Neglecting to recognize these in-plane displacementes leads to the

assumption that they are zero at all nodal points, and that the nonlinear stretching

force varies along the panel.

In the linear case [651-[73] the analysis is very much similar to the one used for

Galerkin's method, equation (1), with the difference that the matrices [M], [/(], and

[A] for the system are arrived at by assembling individual matrices for each element.

Also, the generalized coordinates {q} represent now the nodal displacement(s). The

buckling phenomenon due to in-plane stresses arising from initial and/or thermal

effects can be taken into account by introducing the concept of geometrical stiff-

ness [741. In the nonlinear case [751-[841 the eigenvalues for a given dynamic pressure

specified by _ must be determined iteratively. The most used iterative procedure is
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explained in detail in the work by Mei and Rogers [85]. Briefly speaking, for a given

the linear flutter problem is solved first, yielding a first approximation for the

mode shape, {¢}0, which is normalized by its maximum component. Then the first

approximate value for the displacement is given by {q}l = c_( {¢}0 c'_t), where

c is a given amplitude of panel oscillations, and _( ) denotes the real part. It is

thereupon possible to evaluate the nonlinear stiffness matrix, which depends on the

displacement, and to use this matrix to obtain a new approximation to the mode

shape, {¢}1, associated with the amplitude c. The iterative process is repeated until

a convergence criterion is satisfied. In many cases it is most efficient and accurate

to base the convergence criterion merely on displacement quantities, such as the

norms defined by Bergan and Clough [86]:

1. Modified absolute norm:

Ar i

ri,ref

2. Modified Euclidian norm:

3. Modified absolute norm:

Here N is the total number of unknowns components, and Ari is the change in the

displacement component i during a given iteration cycle. Every such component is

scaled by a reference displacement quantity ri,ref, which are, in general, not equal to

the corresponding total components because if ri is close to zero, the ratio z2Xri/ri

could be a large number even after convergence has occurred. Instead, every /kr i is

scaled by the largest displacement component of the corresponding "type" (deflec-

tions/rotations). A frequency norm, defined as the absolute value of the ratio of the

change in eigenvalue during a given iteration cycle and the eigenvalue itself, may
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also be useful in the convergence decision. Once the converged values for the eigen-

values are known, the problem is solved as in the linear case, that is, Act corresponds

to the lowest value of ,_ for which coalescence occurs (usually for c = 0).

Another possible method of analysis is the so-called second method of Lia-

punov [871. It has proved useful in a number of stability problems involving ordinary

differential equations, but the first application' to a panel flutter problem involving a

partial differential equation is believed to be given in the work by Parks [881. Briefly

speaking, the Liapunov method involves finding a functional V (defined in phase

space) which must possess certain sign properties as prescribed by one of a number

of stability and instability theorems [89], and that describes the motion of the panel

when it is disturbed from its equilibrium position. For example, if V is a positive

definite function and dV/dt can be shown to be a negative semidefinite function

along every trajectory, then V --_ 0 as t ---* cx) and the disturbed motion must die

out. The fact that such a function cannot be found does not imply that the system

is unstable. Indeed, the main drawback of the method is that there is no established

procedure for producing a Liapunov function for any given dynamical system.

1.3 Present Application

The present application addresses the issue of the breakdown of continuum fluid

mechanics when considering panel flutter in the case of hypersonic flight vehicles

traveling at high altitudes, as would occur along the upper trajectory of the National

Aerospace Plane. Once the atmosphere becomes very rarefied, one can expect such

a breakdown, especially for surfaces parallel to the free stream or in the leeward

part of the vehicle. The simplest possible way to deal with the aerodynamics in

this case is to neglect the effect of collisions among molecules, which corresponds

to assuming that a free-molecule flow exists. Another approach is to use some kind

of "particle simulation method" to take the effect of molecules intercollisions into

account. The most important drawback in the latter case is related to CPU time

requirements, even on the largest supercomputers, as well as memory limitations.
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As of today, such applications do not seem to be feasible, although they are possible

from a conceptual point of view.

In this dissertation the free-molecule airloads are used in the study of panel

flutter in the case of a two-dimensional (beam-like), simply-supported panel. The

equations of motion are derived in detail in Chapter 2, allowing for the existence

of distributed longitudinal loads, as well as distributed bending moments, along

the panel. These kinds of loads are necessary in order to model the aerodynamic

shear effects. Linear springs in the longitudinal direction at the panel's leading and

trailing edges are also introduced in the structural model. Neglecting rotary and

longitudinal inertias, one can reduce the problem to an integro-differential equation

in terms of the transverse displacement. Tile problem is solved using Galerkin's

method and direct numerical integration in the time domain.

Chapter 3 deals with the aerodynamic models. The first part consists of a

brief summary of existing formulations in the case of continuum flow. Then the

free-molecule airloads are obtained using a quasi-steady approximation. This ap-

proximation consists of assuming that the angle of attack at a given point in the

panel is equal to the local slope, w,,, plus the angle induced by the panel n_r-

mal velocity, w,t/Uoo. It turns out that the aerodynamic shear stress, considering

the hypersonic regime, is at least one order of magnitude larger than the pressure.

Finally, particle simulation methods are briefly discussed.

Chapter 4 contains the presentation and discussion of numerical results, with

the response of the system being analyzed for a wide range of parameters. Finally,

Chapter 5 is a summary of conclusions and discussions of possible future work.



Chapter 2

STRUCTURAL MODEL

2.1 Equations of Motion

As discussed in the Introduction, the only case to be considered in this work cor-

responds to a two-dimensional panel (beam-like panel) with some small initial cur-

vatm'e. A consistent way to obtain the equations of motion in this case is provided

by Steele t, the effect of moderate rotation of the panel midplane surface being ac-

counted for. Actually, the static version of the governing equations in the case of a

flat panel are those of the von K&rm&n plate theory. It should be pointed out that

Kirchhoff's hypothesis is assumed to be valid, implying that the effect of the trans-

verse shear deformation is neglected. Roughly speaking, the length/thickness ratio

of a isotropic panel should not be less than 15 if results with reasonable accuracy

are to be obtained I911. In the case of composite panels the previous number should

read 25.

A complete derivation of the equations of motion is given in this section. Con-

sider then a panel of length a as shown in Figure 1. The displacements from the

unstressed state of the panel's midplane surface in the x and z directions are de-

noted by u and w, and the total transverse displacement of a given midplane surface

tThis reference corresponds to part of the classnotes provided by Prof. Charles Steele for the
course ME 241 at Stanford University, CA (Moderale Rotaliou Theo_j for Beams aud Shallow
Sh_ lls ).



2.1. EQUATIONS OF MOTION
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Figure 1: Two-dimensional panel with initial curvature.

point after deformation is given by

Wtot_ffx,t) = Wo(X) + w(x,t) . (4)

In equation (4) Wo(X) indicates the initial undeformed shape of the midplane sur-

face, while w(x) corresponds to the transverse displacement of the midplane surface

relative to its undeformed configuration.

The strain ¢ of the midplane surface in the x direction is given by

1 2

e=u,_+wo,_ w,_+_w,_ (5)

Note that the subscript ( ),, denotes differentiation with respect to x. Also, the

terms in w in the equation represent the additional stretching of the midphule

surface due to moderate rotation.

When following the procedure laid clown by Steele (see f(,otnote in pag(.' 12), the

internal forces in the panel's cross-section are defined as the axial stress resultant

N, the bending moment 3I, and the shear force Q. These resultants, with sign

conventions defined as in Figure 1, can be expressed as

N = Eh[¢-aAr(x)] =

[( (:o)= Eh u,.+w0,, w,_+½w,_ -

M = D_; = -Dw,_._, , (7)

Q = M,_ = -(Dw,_x),= (S)

Here a, is the coefficient of thermal expansion, AT(x) is the temperatme difference
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between the panel and the supports, h is the panel thickness, D is tile panel stiffness,

defined as
Eh a

D-
12(1 - u 2) '

and x is the curvature change of the midplane surface, defined by

_ -- W,x x

All other symbols are defined in the Nomenclature table.

The distributed loads Pz and p, being applied to the panel can be represented

as

pz = - p-: , (0)

= p+ - p-; , (1o)

where the superscripts ( )+ and ( )- correspond, respectively, to the upper trod h)wer

surfaces of the panel. It should be noted that the sign convention for p_ and p_

is the usual convention for stresses. Then P2 corresponds to the stress az, on the

lower surface and its positive direction is toward the negative z direction. With the

above representation for p_, when p+ ¢ -p_- there must exist a distributed bending

moment, rn,, along the midplane surface. If rotary and longitudinal inertial loads

are neglected, and the panel is thin, it is reasonable to take

h (p+ +p;) (11)
mx_

Finally, the distributed loads, with the sign conventions illustrated in Figure 1, can

be expressed as

pz - pvhw,u+pA(x,t)+ A pzStat/tx) ,"_ (12)

p_ = pA(x,t) + Ap_t'_t(x) , (13)

h [pA(x,t)+ z_hp;tat(x)] (14)
?T/x -- 2

The first term in equation (12) corresponds to the transverse inertial load, while

the superscrit ( )A indicates an unsteady aerodynamic load and the superscrit ( )_..t
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indicates some kind of static load. The kind of aerodynamic load that gives rise to

pO is a shear stress. It is assumed that there is no shear stress in the lower surface of

the panel in order to write m, as in equation (14). This last assumption corresponds

to the panel being exposed to airflow in its upper surface, and the cavity behind it

being filled with fluid at rest.

The equations of motion, as well as the appropriate boundary conditions, can

now be obtained from Hamilton's principle:

Lo /0(N& + MS_) dx - (p_6u - p_Sw + m_.Sw,_: ) dx +

+ k, ,,(o, t) &(o, t) + +

- (N'& + q'&0 - ) = 0 . (15)
0

Here N*, Q', and M* are the end loads acting at x = 0 or x = a, while/`'l and 1'2 m'e

the spring constants of longitudinal springs attached at the lmn('l ends [the sul)s('ril)t

(')1 corresponds to x = 0, with (':)2 corresponding to x = a]. It should be cnll,hasizc'(l

that the first integral term in (15) corresponds to the variation of the st.raill energy

of the panel, while the second integral term is associated with the work (tone by

the external distributed loads. The potential energy of the longitudinal springs is

taken into account by the terms in the second line of (15). Finally, the work done

by the end loads is associated with the terms in the third line of equation (15).

Using the appropriate expressions for ¢ and _, and integrating by parts, one can

write the variation terms in the integral portions of equation (151) only in terms of

6u and _Sw. These steps give rise to the following equations of motion:

N,_ + p_. = 0 , (16)

M,_,:+[N(wo+w),_], + p,+rn_,_=0 (17)

Equations (16) and (17) can be seen to correspond to equations (1-54)and (1-56)of

Reference [91], pp. 17, if these are conveniently reduced for the case of cylindrical

bending of a flat panel. It is worth mentioning that the equations in the latter

case were derived from the nonlinear theory of three-dimensional elasticity, with
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the basic assumptions that: (1) linear strains and the squares of angles of rotation

are small compared to unity; (2) the rotation about the normal axis to the panel can

be neglected in the calculation of strains and stresses; (3) Kirchhoff's hypothesis is

valid; and (4) the material is linearly elastic. The appropriate boundary conditions

at x=0orx=aare

N = N" + k;u or u = u* (18)

M = M" or w,_ = w,_ (19)

M,_ + N(wo + w),_: + m_ = Q* or w = w* (20)

The upper sign in front of the ku term in the forced boundary condition (18)

corresponds to x = 0, while the lower sign to x = a.

From equations (16) and (17) it is clearly seen that the resultant force N must

be written in terms of w in order to render the equation of motion in the transverse

direction complete in itself. By assuming that the distributed load p_ is known,

equation (16) can be integrated with respect to x from a generic value x to x = a,

yielding

N(x,t) = N(a,t) + p_(rl, t)dr I . (21)

Also, recall that at the boundaries

N = N" =t=ki u (18b)

Then, if x is taken equal to zero in equation (21), one can obtain a relation between

u(O,t) and u(a,t):

u(0, t)=_-_ll [N'l,=_-N*l,:O+fo_P,(x,t)dx-k2u(a,t)] (22)

The next step is to integrate equation (6) from x = 0 to x = a. It is going to be

assumed that the panel is uniform, and w(0, t) = w(a, t) = 0. Using the previous
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results for N(x, t) and u(0, t) gives

Eh ]o° Eh /o°N(a,t) = ak-_a w,: dx-ak--
a

w Wo,zx dx +

/o//ak '_ p=(rj, t) dq dx +
a

Here

+ ak ah - 1 p=(x,t)dx + N: (23)
Otk_

]¢1 a

ah - kla + Eh ' (24)

]¢2 a

ak2 -- k2a + Eh ' (25)

OZk I O_k 2

ak = , (26)
O_kl + Otk2 -- _kl OLk2

N: = (1 - _k ) N'I:=: - _k <_k, - 1 N'l:=o +
Olk 1 O_k 1

Eh foo-_k_ AT(x)dx. (27)
a

Note that u(0, t) = 0 is achieved if ak_ = 1, that is, kl = oo. In this case ak = o_k_.

Similarly, ak2 = 1 leads to u(a,t) = 0 and ak = ak_. From the definition of Nx,

which corresponds to the net applied force at the panel's ends, one can clearly see

the influence of different temperature distributions along the panel, AT(x). Given

two temperature distributions ATa(x) and AT2(x), the effect on the 1)ancl resi)<)nsc

is identical if

foa ATl(x)dx = foa AT2(x)dx

This fact has been previously mentioned in the work by Xue and Mei [211, where

the finite element method was used.

The equation of motion in the transverse direction is found to read

Dw,:::x + p=(wo + w),= - N(a,t) + p=(rl, t)d,] (Wo + w),_._. +

A stat
+ pp h w,t t -- pAz.-- rex, x = LApz (2_)
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It is easily seen that, when p_ = 0, as well as Wo(X) = O, equation (28) reduces to

the form used in classical panel flutter [49]. In this case it is worth emphasizing that

the resultant force N is constant along the panel at any given time, contrary to the

present case.

One may now assume that both A p_t_t and A _starPz are constant along the panel.

If only a flat panel is to be considered, i.e., Wo(X) - O, equation (28) becomes

Dw,,:,:=,+pvhw,,t+ [p2(x t)+Ap; t_t] a h A, ,,,,,:-vz--_(p.),_ +

ak -:-- u ,_ ---+ a - x _ p_
O_k_

+

O_k foa _a A\ , fO px(X,_)dx ..-}-
p Cq, t_dr/dx+akak,-1 = A

a Ogk I

A A stat+ p_(v,t)dr/+N_w,_ =_p_ . (29)

The variables in equation (29) are made nondimensional as follows:

X W

(=-, w=_,a

T=t 4

The result reads

--A Px] W,( --A 1w,_+w,_+ [p_(_,T)+ -pz- _(P2),_ +

- 6_k(1-u 2) W2,, dr/+ 1 -- +-_--{ P=+ +
OCk_

_01 _ , -A O_kl -- 1 f01 --A- otk p,:(r/,T)drlde + oek -- p_(r/,T)ar/
OZk_

I' ]--A
+ p,(r/,T)dr/+R_ W, ee = Pz.

(30)

+

31)
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The following definitions were also used in equation (31):

a 3 a 3

Px DPx , Px - DApS_at

a4 a 4 (32)-A _ A - A p_t_
P* hD Pz , Pz hD '

2.2 Initial Curvature or Imperfections

A quick look at equation (28) may suggest that only the explicit terms in w0 have to

be included in equation (29) in order to obtain the equation of motion which takes

into account the effects of initial curvature. However, a more careful examination

shows that the inherent geometric curvature of the panel also in(luc(-s st_,ady a_'r()-

dynamic loads, which should be included into Ap _'"t (x). If th( _ a('r()(lynmni(: l()a(ls

are assumed to be of the form

p)(_, T) = ,A 1 _)Y,( ={--.,42 _'V,:r , (33)

--A
p, (_, 7-) = A3 W,_ +.A4 W,:r , (34)

one can write

, (35)

(36)

Note that the present definitions of Px and P_ are similar to the earlier ones, re-

taining only the constant part of the Ap star load along the panel.
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At least two kinds of initial curvature may be of interest:

1. Constant curvature panel: such a panel was studied by Dowell[52'53] in the

The initial geometry of the panel may be approximated by thelate 60's.

parabola

[w0 g 1-4 _- , (37)Wo=h=

where H is the maximum height of the curved panel. Then the nondimensional

initial curvature of the panel is just

H

F0 -_ -W0,¢_ = 8 /'T (3S)

2. Panel with sinusoidal curvature: this case corresponds to take

w0 H
W0- h - h sinprr_ , (39)

where H is again the maximum height of the curved panel. Then

H

I'0 = -W0,_ = --_ (prr) 2 sin prr_ o (40)

Such a curvature may be of interest when approximating a general initial

geometry using a Fourier series.

2.3 Role of Structural Damping

Since this work deals with a rarefied atmosphere, the magnitude of the aerodynamic

damping terms, with coefficients As and A4, may be expected to be very small. This

raises the question of how to include more damping, if necessary, into the equation

of motion. During numerical integration such damping may be required to yieht a

converged solution.

Structural damping can significantly modify the panel flutter boundaries, but

the modification is extremely dependent on the type of structural damping model

employed. If only linear damping is considered, the work by Ellen [921 provides a

useful classification of this mechanisms and its influence on the flutter boundaries.
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Basically, structural damping can be introduced into the system by adding a term

of the form
0 3+1 W

g OtOx3

to the equation of motion (28), where g is a structural damping coefficient. Two

possible mechanisms can be classified as follows:

° Viscous damping: in this case g is a constant. In its simplest form, 3 = 0,

the term is of the same type as the aerodynamic damping term in the case

of linear piston theory, as well as the present rarefied formulation. This has

the analytical advantage of grouping the structural and aerodynamic damping

terms in a single "total" damping quantity. This type of damping is always

stabilizing. However, when 3 > 0 the system can be destabilized since the

structural damping term may then supply energy to the system instead of

dissipating it.

If a modal solution such as Galerkin's method is used, damping may be taken

to vary from mode to mode; this procedure, originally with 3 = 0 terms, is

equivalent, on varying g, to the insertion of an appropriate j > 0 term with

constant g. For example, in Reference [36] a two-mode solution is used to

investigate the effects of structural damping with _1/(,'2 = 1 and 4. Here {,_

is the damping ratio of the nth mode and g = 2_',_w_/w0, a_0 being a suitable

reference frequency and w,_ the nth natural frequency. Note that _'1/42 = 4

implies 41wl = _2w2, that is, g = constant whence j = 0. In this case the

critical flutter parameter increases with structural damping, although this

effect is almost not noticeable for small values of aerodynamic damping, gA.

On the other hand, the case 41/{2 = 1 can be shown to correspond to j = 2,

and the effect of increasing the structural damping is destabilizing, especially

when gA is small. Lottati [931 studied the case for 3 = 4 assuming a viscoelastic

type of damping, which corresponds to multipling the panel stiffness D by a
0

factor equal to 1 + g _. His conclusion is that this kind of damping has a

strong destabilizing effect for all values of g _ 0. One point that is worth

emphasizing after all this discussion is that the assumption of _'n w,, = _'l a_l,
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Figure 2: Correlation of predicted damping ratio for ./= 0 with Zener equation.

.

corresponding to 3 = 0, yields values of _',/_1 that follow closely the results

obtained if the "Zener equation" described in Reference [94],

OJ/OJrela x
¢~

1 + 2 '

is used for values of frequency at least four times larger than tile relaxa.tion

frequency OJrela x defined there, see Figure 2. This may be significant since

the Zener equation is based on a very basic physical assumption, i.e., that the

mechanism which causes energy dissipation in metals is heat flow due to strain-

induced temperature gradients. Experimental data obtained for aluminum

panels correlate well with the theoretical results.

Hysteretic damping: it can be shown that the viscous type of structural damp-

ing just discussed results in a dissipation of energy per cycle which is propor-

tional to the frequency of oscillation. As structural hysteresis loops appear

experimentally to be frequency independent, the previous damping expres-

sions need to be modified to include this mechanism. This can be done by

taking g = O/]w[, where _ is a constant parameter and [w)is the modulus of

the complex frequency of the motion, which makes this definition applicable
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to nonharmonic oscillations. The drawback of this kind of formulation is that,

for a real frequency of vibration, this term becomes i _ OJw/Ox J for the positive

frequency spectrum, a form that is strictly valid only at neutral stability.

2.4 Galerkin's Solution

As discussed in the Introduction, one of several ways to solve the integro-differential

equation (31) is to use Galerkin's method, where a expansion of the form

o<)

W((,T) = _ qm(7-)W,_(_) (41)
rn=l

is adopted. Here Wm(_) are assumed modes and only a few modes are used in

practice, that is, the series is truncated. In the case of a simply supported pmael it

is possible to take

W_({) = sinmrr{ . (42)

By applying Galerkin's method, one converts the integro-differential equation (31)

into a system of ordinary differential equations in time. The number of equations

equals the number of assumed modes taken in equation (41). For the case of modes

(42), the nth equation is given by

.--)
T

1

+ y'_b:_q_+c,_it,_+__c,_milm+_O,_--d,_ (43)
m m

The definitions of the various coefficients are listed in Appendix A. Note that the

introduction of viscous structural damping with ) = 0 in the present case amounts

to add the term

7r2 (10_ (44)

to the term cn 0,,.
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AERODYNAMIC MODELS

3.1 Continuum Flow

In the study of panel flutter in this regime, the aerodynamic shear loading is usually

neglected compared to the aerodynamic pressure. Also, the latter may be considered

as the sum of two parts: 1) one given by the pressure fluctuations on the panel in

the absence of any panel motion, e.g., due to turbulent boundary layer fluctuations,

and 2) the other due to the panel motion itself. Inherent to this superposition is the

assumption that the panel motion and the consequent portion of the aerodynamic

pressure are sufficiently small so that the turbulent pressure fluctuations themselves

are not substantially modified[ll. This means that this last contribution can be

taken as prescribed from experiment or separate analysis. On the other hand, the

aerodynamic pressure due to the panel motion may be related to w in general by

an expression of the form (two-dimensional case): [11

t a 1

+ fo fo A(x-x',t-t')[w,_,-t-_-_-w,e] dx'dt'} (45)

Here A is an "indicial" function which depends parametrically on the freestream

Mach number, M_ = Uoo/aoo, where a_o is the freestream speed of sound. Note that

this term describes the effects of spatial and temporal memory, i.e., the pressure at
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a particular point x, at a particular time t, is influenced by the motion at all points,

0 < x' < a, at all previous times, 0 < t' < t. The neglect of the memory effect leads

to the so-called linear "piston theory" approximation [95,41

pn_(x,t) - POOU_ [w,,+ 1 ]Moo _ w,t = (46a)

= -pooaoo [Uoow,,+w,t] (46b)

This result is accurate enough for large values of Moo (high supersonic-hypersonic

regime) and can be recognized as the relation between the motion of and pressure

on a piston in a tube. The total piston velocity includes both a convection term,

Uoo w,::, as well as the direct velocity, w,t. Here the panel is the equivalent piston

and the fluid "tube" is perpendicular to the undeformed panel.

By nondimensionalizing according to expressions (30), one modifies equation

(46a) into

+ #

where:

A -- 2qa3 = Poo------a-a
MooD ' # pph

1

q= poou£ .

(4s)

Note that the parameter # can be identified as a mass ratio. Also, q is the familiar

dynamic pressure.

Another level of approximat'ion can be obtained if simple harmonic motion is

assumed and equation (45) is expanded as a power series in frequency, co, that is,

i_(x,w)= p..__.U_ [t?,_+M_-2 iw ]_/M_ - 1 _ i _ _5 + O(co2) . (49)

In the time domain this corresponds to the so-called "quasi-steady" approximation,

and it is clear that it reduces to the linear piston theory result for Moo >> 1. At

low supersonic Mach number the second term between the brackets gives rise to

negative damping when M_ < 2, which can lead to single-degree-of-freedom flutter.
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All the remarks regarding the applicability of piston theory results also apply to

this approximation.

For the sake of completness, it should be noted that second-order piston theory

introduces nonlinearity in the aerodynamic model by adding the term

MOO

to the linear expression (46a).

7+ 1M (w.,_ 1 2]-T- w'' )

This nonlinearity may become important for hy-

personic speeds because of the Mach number factor multiplying the term between

parentheses, but Eastep and McIntosh [451 emphasize that only the terms

are relevant for parameter ranges anywhere near those found in practice. In fact,

the term proportional to (w,,_)2 produces an overpressure, tending to push the panel

into the cavity, for any excursion of the panel from its flat undisturbed state.

If "external" aerodynamic pressure contributions independent of the panel mo-

tion are not considered, and linear piston theory is used, the values for the .Ai

coefficients in equations (33) and (34) are

!

A1 = --A A2 = AI_ #
' vAMOO ' (51

A3 = 0, A4 = 0.

3.2 Rarefied Flow

As a spacecraft or aircraft gains altitude, the air becomes increasingly less dense. At

a sufficiently high altitude the atmosphere becomes so rarefied that one can expect

the breakdown of the continuum hypothesis. When this happens, the discrete molec-

ular nature of the gas surrounding the spacecraft can no longer be ignored. At this

point methods from kinetic theory [961-[98] must be used to predict the aerodynamic



3.2. RA REFIED FL 0 W [-_

behavior. It is useful to mention that the analysis of such flow fields is included in

the field of rarefied gas dynamics. The available literature in this subject is very

extensive, but the proceedings of the biannual series of International Symposia on

Rarefied Gas Dynamics form a unique record of the field. More especifically, the

recent survey by Muntz [991 is a very enlightening work.

The basic parameter for specifying the degree of rarefaction of a low-density

flow is the Knudsen number, Kn, which is the ratio of the molecular mean free path

of the gas to a characteristic dimension of the flowfield. Continuum flow theory

is assumed to apply when this parameter is much smaller than one. On the other

hand, a large Knudsen number (usually Kn _> 1) characterizes the so-called free

molecule flow in which intermolecular collisions are neglected. The region between

these limits is generally referred to as the transition flow regime.

3.2.1 Free-Molecule Regime: Quasi-Steady Approximation

The estimate of the aerodynamic loads due to the panel's motion in the free-molecule

flow regime is based on the previous development made by Ashley [961. In this study

the steady values of the pressure and shear stress exerted on a surface element at

an arbitrary orientation with respect to the mean flow were obtained through a

general procedure. Note that only a simple gas (i.e., the gas is composed of a single

chemical species) is considered. Assuming Iw,x I << 1, one sees that at any instant

the "steady" slope of a surface element of the panel to the mean str(_am U,_. is

w,x. The "quasi-steady" approximation implies that the surface element normal

velocity w,t induces a further inclination relative to the mean flow, such that the

total slope of a surface element becomes w,_ + w,t lUg. Inherent to the use of this

approximation in the procedure described by Ashley is the assumption that enough

molecules strike the surface element during an interval At, and that both w,_ and

w,t do not change appreciably during this time interval.

Following the development by Ashley, the normal and shear stresses are sepa-

rated into those due to the incoming stream of molecules (Pi and 7"i) and those due

to the reflected or reemitted stream (p_ and r_). The total pressure and shear stress
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are then given by

= _ + rr . (52)

p = p, + pr , (53)

The incident values can be obtained by considering first a reference frame x'y'z'

fixed relative to the mean motion of the gas. Then the number of molecules of class

c' (i.e., molecules having velocities in the range c' to d + de') per unit volume is

given by [981

dn = noofMAX dc'l dc'2 dc'3 =

= noo e-Z°°(c'+c_+C3)dc',dc2dc_, (54)

where noo = poo/m is the number density of the flow,/300 is defined by

1

t3oo - 2RToo '

rn is the mass of one molecule, and R is the gas constant. Note that the Maxwellian

distribution of thermal velocity, fMAX, was used to characterize the velocity distri-

bution function of the undisturbed flow.

Consider now a surface element moving with velocity components el Uoo, e2Uoo,

e3Uoo in the directions x _, y', z _ respectively. A new reference frame xsysz_ is instan-

taneously fixed to the surface element, parallel to the x'y'z' system and such that

x8 is the outward normal to the surface, as shown in Figure 3. Then any molecule

has velocity components in the xs, y,, z, directions given by

e = c'- e U_ (55)

Hence the distribution of molecular velocities, which was initially given by equa-

tion (54), can be rewritten in terms of cl, c2, and c3:

( fl_ _ 3/2 -_°_[( c_+_U°°)2+(c2+_2U°°)2 +(_3+_3Uc¢)2] dcl dc2 dc3 (56)dn = no_ e
\Tr/
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Figure 3: Reference frames for tile quasi-steady apl)roximati_m.

The flux of molecules of class c arriving at the surface element is given by

- cl dn [98], that is,

-- nocClfMAX dcl dc2 dc3 (57)

The minus sign in the above expression is necessary because only m<)h'culcs with

velocities in the x, direction in the negative range -oc < Cl < 0 can strike the

surface. If this expression is integrated in each velocity range, one can find the

number of molecules ._. striking unit area of the surface element per unit time:

.IV"i = --nov C 1 e-z_(_+_'U_)_ dq x

oo

X e- Z_(c2+e2U_)2 dc2 c- 3.×(c:,+<_..._)- (l(3 =

-- CI:_3 (g 1 ) • (,._8)
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In equation (58) the following functions were used:

cI,3(¢) = _1(¢)+_-_2(;) , (59a)
S

_q2
e

' (59b)

_2(_) = 1 +erf(;) (59c)

Here erf(;) represents the conventional error function of statistical theory, defined

by

2 fo _ ,?erf(q) = _ e- dT]

The parameter s = Uoo/c,, w is the so-called molecular speed ratio or the "Mach

number" based on the most probable molecular speed, e,,_v = 1/_. It should be

a perfect gas .s = _/7/2 Moo.noted that for

The forces on the surface can be found by considering first the total momen-

tum I of the mass stream rnN],, in some arbitrary direction specified 1)y the di-

rection cosines tat, ta2, taa. This is found by integrating the momenta of nlolecules,

-- (C1 tal Jr- C2 ta2 't- e 3 _3) el dn, in each velocity range, yiehting

I(e,,6,e3) -- q {(elgl nt-e2g2nt-e3ta3)_l(el)n t-

Al'- 2,S'-""_ OK e I (e 1 e 1 JV g2ta2 "{- C3 ta3) q'2 (C"I) (C0)

The pressure Pi is then obtained by setting (l = -1, (2 = (:_ = (), whih, the, _hcm"

stress r, corrcsl)onds to ('2 = 1, gl = (_ = 0.

In the case of a two-dimensional, rigid surface inclined with respect to the un(lis-

turbed flow by an angle 0, one has ct -- sin 0, e2 = - cos 0, and e3 = 0. For the cor-

responding panel flutter case it is reasonable to take [0[ << 1, such that sin 0 _ O and

cos 0 _ 1. The quasi-steady approximation then calls for setting 0 = w,_ + w,t/Uoo,

where it is important to point out that w,t/Uoo << 1 because the flow is considerc(1
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to be hypersonic. With these results, the incident pressure and shear stress are

given by

ri = qq53(e) , (61)

{ 1 }• + (62)
Pi = q -_ _ '

where

(
Note that in the case of a steady tangent stream (w,_:= w,t = 0) the previous

equations reduce to

q p_ U_

risteady -- V/'-_8 -- 2_ ' (G3}

__ q __ P_
Pisteady 2S 2 430o (64)

Before turning to the problem of finding the reemitted pressure and shear stn'ss,

it is important to comment oi1 the gas-surface boundary conditions. D_"spite a gr_'at

deal of theoretical and experimental study on this subject [100,1031 there is still no

general consensus about what kind of model shouhl be used when trc:ating gas-

surface interactions. The two most simple models are those of specular and diffuse

reflection [1041.

The specular model assumes perfectly elastic collisions between molecules and

the surface, that is, the molecular velocity component normal to the' surfac¢_ is

reversed, while that parallel to the surface remains unchang(,d. Thus

- (65)
Tr st)e ¢ -- -- Ti

Prspec = Pi (66)

This is a useful model for analytical studies but it is not physically meaningful in

real gas-surface interactions.
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In diffuse reflection the velocity of each molecule after reflection is independent

of its incident velocity. In fact, it is assumed that the molecules are brought to

rest relative to the surface and then reemitted with the equilibrium distribution

corresponding to a temperature Tr, which may differ from the temperature T v of

the surface. Thus the values of rr and PT correspond to expressions (63) and (64)

applied for a stationary gas at temperature T,, that is,

rrdi. = 0, (67)

Pr 7/r m

Prdiff -- 4fl_- 4fl_ (68)

In the absence of adsorption or emission effects at tile surface, the incident number

flux of molecules Af/to a surface element must be balanced by the ,'cflected number

flux Hr. Therefore, using equation (58),

n_U_

2 -
_r

par s q'a(E)=_ P_ai_ - 2

Actually, the factor multiplying the function q)3 in the above expression can be

reduced to a more suitable form if the definition of the specd of sound for a 1)erfcct

gas is used, and the relationship between Moo and s is recalled. Doing this

_/7r q _/_--_ (I)3(e) . (69)Prdiff = 2")' M_

Note that in the case of a steady tangent stream the expression for Prdi ff becomes

q (T_ p_ _, (70)Prsteady -- 3,2_I£ _ - 4¢_

The extent to which the reflected molecules have their temi)crature adjusted

toward that of the surface may be indicated by the "energy accommodation coeFfi-

cient" ot_, defined by
&-£

c_ - & _ gv (71)
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In expression (71) gi and gr are respectively the incident and reflected total energy

fluxes, while £'p is the total energy flux for the case of complete diffuse reflection,

i.e., Tr = Tp. Some experiments with engineering surfaces in contact with gases indi-

cate that the reflection process approximates complete diffuse reflection. However,

Hurlbut [1021 mentions that recent measurements made in the Shuttle Orl_itcr, as

well as the study of the decay of rotational frequency of the spin stabilized satellite

Explorer VI, rule out the complete diffusive process as the predominant scatter-

ing mode of molecules interacting with surfaces. Alternative empirical reemission

models have been proposed in past years. An example is the Nocilla model studied

by Hurlbut and Sherman[1051 as well as Pandolfi and Zavatarro [10Gl Tho im'lu-

sion of some arbitrary fraction of specular reflection apl)ears,howevcr, t_ rcm_dn

the most practical way of allowing for departures from COlnl)h-tc diffuse reftocti¢m.

This approach is going to be followed here, such that a fraction _,,,, c_f tlm m_,h,culcs

is considered to reflect si)ecularly, while the remaining fraction (1 -(_,,_) r('tt('cts

diffusively with T_ = T v. Note that the coefficient a,,, can be viewed as a "momen-

tum accommodation coefficient". According to the foregoing convention, and using

equations (52) and (53), the total shear stress and pressure exerted on unit area of

the surface element can be written as

r = (1 - a.,_)r, ,

p = ( 1 q- o,',_) Pi + (1 - a',,, )P'diff '

With the use of equations (62), (61), and (69) the final expressions for r and p are

T

- = (1-c_m)(I)a(e) , (72)
q

[ i ]P (1 + am) e 1 - a,,_ re Tp '-I'a(e) + q'.2(e) (73)-- _ -- JI--

q s Moo 27 Too 2s 2

These relations are still nonlinear in the motion w(x,t), but they may be lin-

earized if one recognizes that the parameter e may be reasonably taken to be snmll.
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Expanding the exponential and "erf" functions in Ca and (I)2, assuming that e << 1,

and retaining only terms of up to first order in e gives

r 1 - _m

q
W_t

p_ 1[q 2s 2 1 +am + (1 - c_m) Tp +

(74)

nt- 2V/'_8 4(l+ctm)fi_rr(l__o_m ) Yp to,_+_--_-

Note that both expressions have a steady part that does not depend on the lmncl mo-

tion, as should be expected. Also, the ratio of p/r for both the steady and unsteady

parts is of order of 1/s. Since the regime considered is hypersolfiC (M._ > 10) and

k.lo_/s = (9(1), the results indicate that the pressure is much smaller than the shear

stress. It must be pointed out that equations (74) and (75) correspond to equations

(2.55) and (2.56) of Reference [107], pp. 43, where the parmneter 0 = 1 - C_m.

In order to find p2 and p a it is necessary to decompose both r and p along the

x and z axes of the structural model, and take only the unsteady part. Thus,

lust )P2 = (1 - O_m) q w,z +

p_ -- V/-_s 2(1 +ocm)+_(1-o_ _ VT_ u,,_+_-_- +

T6)

(-;-;)

Note that the term [(..-)/s 2] u,,_: due to the contribution of the steady part of the

pressure p to the load p a has been neglected. On the other hand, the corresponding

contribution of the steady part of the shear stress r to p,a was retained because it

is of the same order of magnitude as the other terms due to the unsteady part of p.
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If equations (76) and (77) are nondimensionalized according to definitions (30) and

(32), the fnal result reads

p,:(_,T) AMoo th(1 - c_m) W,¢ + W,? ,
2

p,({,?) = - v/_ 2(l+a,,,)+_(1-_m)v@- IV, e+ _I'1',? +

(79)

where:

T,, (80)th = h O = -- .
a To_

Note that three more paranmtcrs are added to the prol_h'nl wh(,n the eft'cots _f slwar

stress and rarefied flow are introduced: th, a',,_, and (9. In fact, th is inherently built

into the definition of P_ if it is to be compared to Pz, and the ratio Tr/T_ can lw

taken as a variable of the system if the heat transfer problem between the plate and

the flow is to be considered. In this work Tv, and consequently (9, ix assumed to 1_'

held constant.

If equations (78) and (79) are considm'cd, the vahu,s of t.hc .A, c,,,.Iti,'i_,_tts a_r,'

AM_
A3 - th(1-am) ,

2
(83)

i t_¸•,'14 = ,Aa A_/oG
84)
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Note that the relation A2 = .A1 _/#/A Mo_ holds if the shear stress effects are ne-

glected, as in the case of linear piston theory. Therefore,

[._I f-tool(no she_r) 1 2(1 + a,,,) + (1-am)
•A1 pist _

In practice ® > 1, with the result that the previous ratio becomes always larger

than approximately 4, irrespective of the value of am. This suggests that piston

theory estimates of panel stability are unconservative with respect to free molecule

results when shear stress contributions are not considered. ActuMly, the same kind

of relation between A2 and .,41 is also true for the case of pure specular reflection

(c_m = 1). Again piston theory airloads are unconservative.

Finally, note that the value of P_ corresponding to the steady value of r is given

by
1 - a,n

?-steady _ q V_ s

a 3 1 - am

3.2.2 Transition Regime: Particle Simulation Methods

If intermolecular collisions are to be taken into account, there are basically two

approaches: 1) try to solve the Boltzmann equation [108], which is the fundamental

equation of kinetic theory if only two-body collisions are important, ()r 2) model

the gas flow at the molecular level [104]'[109]-[115]

The Boltzmann equation is written in terms of the velocity distribution func-

tiom with the independent variables being those of phase space (coordinates and

velocities). One of the major difficulties in obtaining solutions for nontrivial gas

flow problems in the transition regime in this case lies in the complicated structure

of the so-called collision integral. One way to overcome this problem is to lincarize

the collision term for flows where the average speed and temperature exhibit little

variations. Another approach consists of using alternative, simpler expressions for

the collision integral, i.e., collision models. A somewhat different method consists
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in expanding the velocity distribution function in terms of a small parameter. If

this parameter is taken as the Knudsen number, such an expansion is known as

the Chapman-Enkosg expansion. Both the Euler and Navier-Stokes equations of

fluid mechanics can be derived in this way by retaining terms of up to zeroth and

first order, respectively. The natural extension of the Chapman-Enskog theory is

to carry the expansion to higher powers of Kn, which should provide formulations

applicable further and further into the transition regime. Tile so-called Burnett

equations correspond to carrying the Chapman-Enskog expansion to second-ord,_r

accuracy, and there has been a major effort at Stanford University to calculate

hypersonic Burnett shock solutions [1161

The alternative, as stated before, is to use some kind of particle simulation

method, where the gas is modeled by some thousands or even millions of simu-

lated molecules in a computer. The memory requirements are very large in this

case since the velocity components, internal states, and positi(m coor(linat(:s (_f t l_(:

particles must be stored as the solution is advanced in time. On the ,_ther hand,

such phenomena as dissociation and chemical reactions can be readily incorporated

into the program as long as the physics of the processes can be described at the

molecular level. The calculations are always unsteady, with the molecules being fol-

lowed through representative collisions and boundary interactions. However, most

applications up to the time of this writing have been restricted to obtaining steady

state solutions as the large-time limit of the unsteady flow. One of the main reasons

for this is the necessity to use some kind of averaging to obtain accurate macro-

scopic properties such as pressure and density. If the solution is assumed to be

approaching a steady state, time averaging can be used. A cell network is necessary

only in physical space, and then mainly to facilitate the sampling of properties and

the choice of collision pairs. Usually the algorithms are described in such a way

that the computation time is directly proportional to the number of molecules and

cells in the simulated flow. This means that solutions are also very computationally

intensive because of the large number of simulated particles.

The most widely used particle simulation method is the direct simulation Monte

Carlo (DSMC) method, as introduced by G. A. Bird [1041 in the 1960s. This method
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has been constinuously advanced to the state where it is reliable, quite accurate and

can handle complex problems [117]. In principle, three-dimensional problems are

not conceptually different from two- or one-dimensional cases since the collisions

are always treated as a three-dimensional phenomenon. However, the CPU time

and memory requirements for a typical three-dimensional application may be up to

two orders of magnitude larger than those for a two-dimensional problem. One of

the major drawbacks of the DSMC method is that the collision algorithm employed

does not allow one to make effective use of supercomputers having a vector and/or

parallel architecture. This can be better realized if it is known that an efficiently

vectorized code is over an order of magnitude faster on a vector machine than

the same code when limited to scalar execution. Therefore, the development of a

selection rule governing collisions which is compatible with parallel decomposition

would greatly improve the performance of such a method. This was accomplished

by Baganoff and McDonald [11 21, leading to the theses of McDonald [1 13], applicable

to the Cray vector computer architecture (initially the Cray-2 and afterwards the

Cray-YMP), and Dagum [1141, who used a 32k processor Connection Machin_.
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RESULTS

The general solution for the system of equations (43) in free molecule flow is ob-

tained following the procedure described by Dowell [491. Thus, all the parameters

(A, #, _h1_, _m, @, 7, th, Pz, R_, o_k,, the kind of curvature and H/h) are speci-

fied, with the q,_ being determined as functions of time 7- by numerical integration.

The numerical integrator used is an adaptive-stepsize, fifth-order Runge-I(utta algo-

rithm [118], with monitoring of local truncation error to ensure accuracy'. Actually.

the code is implemented in such a way to allow the user to specify a maximum value

for the time step, with a default value of 9.95 x 10 -3 in terms of the nondimensional

time 7-. No results are going to be shown, but several studies were made regarding

the maximum size of the time step. If the default value is used, the actual time

step usually remains close to 8 x 10 -4. For a maximum value of the order of 10 -s

or smaller, there is basically no change in the time step, while the final solutions

remain the same. Therefore, it may be assumed that there are no mathematical

instabilities associated with the numerical integration. Usually the interesting kinds

of solutions which are sought are limit cycles, with the value of k being varied for

a given set of parameters until such solutions are found.

Some aspects of the problem can be discussed before any actual numerical re-

suits are shown. First, it is useful to take a closer look at the integro-differential

equation (31), especially the terms involving--a p_. Now recall that this distributed

N]
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load has a contribution proportional to W,_. Then the term

+

leads to a contribution of the form (W,_)2, which is similar to the one present in the

second-order piston theory formulation, equation (50). As explained before, this

produces an overpressure, tending to push the panel into the cavity, i.e., the limit-

cycle motion may be expected to be asymmetric with respect to its maximum and

minimum amplitudes. This having been said, one may conclude that the minimum

amplitude (in absolute value) is going to be larger than the maximum amplitude in

the case of a flat panel. As will be seen, this is not the case, most probably because

of the integral terms involving --Ap, which multiply W,¢_. As a matter of fact, these

terms can be written as

/0'ak W(_,T) d_ - W(_,T) + terms involving W,r ,

meaning that the total membrane stress for a given deflection does not equal the

one for the same deflection with a sign change. This further indicates an asymmetry

in the limit-cycle motion.

Second of all, an analysis of the contribution of the airloads to the coefficient a,_

of the generic equation (43) can give some hints about the variation of the frequency

of flutter (or the main harmonic of a limit-cycle solution). Looking at the definition

of an in Appendix A, one can see that the presence of the term A3/2 > 0 indicates

that the frequency of flutter is going to be larger than the one corresponding to

the same problem when shear stress effects are neglected. If the influence of initial

curvature is considered, an increase in the initial amplitude of the panel (H/h > O)

may be expected to lead to an increase in the main harmonic in the case of sinusoidal

curvature. The behavior should be the opposite for a constant curvature (parabolic)

panel.

Thirdly, suppose that the panel is fixed horizontally at both ends. It can be

shown that, in the case of a uniform distributed longitudinal load like the one

corresponding to P,, half of the panel is under tension while the other half is under

compression. Then a large enough load may cause the panel to buckle. When
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this happens, the buckling mode shape has a considerable contribution h'om the

second mode, in contrast to classical buckling. In the latter case the buckling

mode shape corresponds to the first mode solely. It should be recalled that only

a simply-supported panel is being considered here. If a six-mode representation is

used Pxbuck = 83.16, and the ratio between the contributions of the second and first

modes to the buckling mode shape equals 0.2615.

Finally, regarding a general solution qn, one can note from equation (43) that

- q,, is not a solution. This should be borne in mind when considering stable static

deformation solutions, such as a buckled solution. Mathematically speaking this

effect is associated with "quadratic" terms like a_: q_ q_ or b,*_,*,_q_. By looking at

the definition of the coefficients of equation (43) in Appendix A, it is clear that

all such quadratic terms appear because of the unsteady shear stress and/or initial

curvature.

4.1 Nominal Configuration

Regarding the numerical results to be presented in this chapter, the nominal con-

figuration is specified by the following parameter values:

Mo_ = 25, tt = 2.37x 10 -9

0 = 3.5, th = 0.005,

o_m = O, _, = 1.4,

O/k1 = 1., Olk2 ----- 1 ,

R, = 0, P_ = 0,

H/h = O, , = 0.3.

The environmental parameters correspond to a standard altitude of 110 km [119]

while the material is taken to be R_ne 41. The value of 13 = 3.5 is associated with

a panel temperature of approximately 840°K _ 1050°F. It is worth pointing out

that these are realistic values corresponding to a point in the National Aerospace

Plane (NASP) flight envelope [120,1211 which approaches orbiting motion.
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The first interesting observation when solving the problem is associated with

the extremely small value for # due to the low density. In this case, as mentioned

in Reference [49], it is not possible to achieve a limit-cycle solution tilrough time

integration. Whatever motion is excited by the specified initial conditions, it con-

tinues "forever" in the computation [Figure 4a)]. In order to achieve a limit-cycle

solution, and thus define the flutter boundary, it was decided to introduce struc-

tural damping of the viscous type into the formulation. This was accomplished by

following the rule discussed in Section 2.3, in which (,_ = (lO.21/_,dn. AS may be noted

by comparing Figures 4a) and 4b), this indeed introduces enough damping into the

system to allow the limit cycle to be achieved. The final limit cycle amplitude has

clearly not been reached at T _ 8, but the solution is changing toward it. The

influence of the magnitude of this kind of damping on the flutter boundary is going

to be discussed later.

Next, it is also interesting to analyze the shear stress effects in the panel flutter

phenomenon. Figure 5 shows the bifurcation diagram (limit-cycle amplitude versus

dynamic pressure) for three different free-molecule models: FMp indicates that

only the pressure is considered, FM,_s that unsteady shear stress effects are also

included, while FM corresponds to the complete free-molecule model. One point

to be mentioned here is that all values of the panel deflection to be shown in this

chapter are associated with the coordinate _ = 0.75. This is approximately the

location where the panel assumes its maximum deflection amplitude in a given

cycle. It should be said that a six mode representation is being used here; further

comments on the number of modes and convergence of the solution are given later

in this section. It can be seen from Figure 5a) that the introduction of shear stress

effects stabilizes the panel. There is not a large difference if the steady part of

the shear stress is considered or not, although its inclusion slightly destabilizes the

system for small values of the limit-cycle amplitude. It is not shown here, but this

is not true for an incompletely-converged two-mode solution, since the curve for the

FM (complete) model is significantly shifted to the right with respect to that for the

FMus model. Another point to emphasize is that the limit-cycle peak amplitudes

are slightly asymmetric due to the unsteady longitudinal load -Ap_, as expected. This
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b) Structural damping included: _1 = 0.01.

Figure 4: Time history of the first generalized coordinate ql: nominal configuration,

six-mode solution, )_ = 312.3 and ql(0) = 0.01 [six mode representation,

with all zero initial conditions except for ql(0)].
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effect becomes more noticeable as the amplitude increases. In general the negative

peak (in absolute value) is smaller than the positive peak.

The variation of the limit-cycle main harmonic is shown in Figure 5b) for the

different free-molecule models. Actually, all q,_ are essentially simple harmonic in

the present ease, although this may not be true in general. It should be noted that

the frequencies used are made dimensionless in the same way as time. The usual

natural frequencies for the linear panel correspond to the relation f,_ = n 2 7r/2. As

expected, the inclusion of shear stress effects causes the frequencies to increase.

A curious point is that the curves corresponding to the models FMp and FM_,s

seem to be parallel, with the steady longitudinal load causing a sharper increase in

frequency as the limit-cycle amplitude increases. In dimensional terms, the values

of the frequencies in Hz are given by

_..pD th_ Ef= vha 4 f a 12pp(1-u 2) f " (86)

For Ren_ 41 E _ 1.8 x 1011 N/m _ and pp _ 8.2 x 103 kg/m 3, such that for the

nominal configuration f _ 7 f/a. Assuming a panel 60 cm long, this means that a

value of f = 6 corresponds to a frequency of 70 Hz.

Once it is understood how the inclusion of the aerodynamic shear stress affects

the phenomenon, all remaining calculations were obtained using the most realistic

FM or complete free-molecule model. The natural next step consists of a con-

vergence study, illustrated in Figure 6 through the use of a bifurcation diagram.

The numbers close to the solid curves indicate the numbers of modes used in each

solution. It is clearly seen that six modes will ensure converged solutions, which

compare very well with solutions obtained using up to twelve modes. The linear

flutter parameter ,kc_, corresponding to a zero limit-cycle amplitude, can be de-

termined with a relative error of approximately 15% when using only two modes,

but this error increases for a given limit-cycle amplitude. For the six-mode solu-

tion ,kc, = 312.296 and fc_ = 5.6140. Other examples have been carried out which

further verify these conclusions.



4.1. NOMINAL CONFIGURATION [-_

/

1.00

0.75

0.50

0.25
.....FMp

-0.50

-0.75

-1.00

0,00 ...................................................... ' ............................. _...................................................

= 0.75

0 100 2OO 3OO 400 5OO 6OO

,X

a) Limit-cycle amplitude.

9.0

8.0

7.0

6.0

5.0

4.0
0.0

--FM

---FM.,

= 0.75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

b) Limit-cycle main harmonic.

Figure 5: Variation of limit cycle characteristics for different free-molecule models:

nominal configuration and six-mode solution (see text for label defini-

tions).
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Figure 6: Bifurcation diagram: convergence study for nominal configuration.

Figure 7 shows phase portraits for the two- and six-mode solutions, respectively.

The numbers close to each curve indicate the generalized coordinates. The positive

peak amplitudes in both cases are similar, and one can see how the higher modes

influence the results. The arrows in the figures indicate the direction of motion, as

well as points corresponding to a given time instant. From this last information,

it is clear that even modes are practically in phase with each other, as well as odd

modes. On the other hand, even modes are essentially out of phase relative to odd

ones. Finally, it is worth emphasizing the initially unexpected result that the second

mode is the dominant one, instead of the first mode. This is believed to occur due

to the buckling of the panel under the uniform distributed load Px. In fact, if the

value of Pxb,ck given in the introduction of this chapter is used, the buckling load

in the present case corresponds to a value of A _ 247. This means that the panel

is inside the buckling region when it starts fluttering. Although it is not shown

because it is physically unrealistic, a phase portrait corresponding to Figure 7 but

including only unsteady shear stress effects leads to a dominant first mode. From

now on, all results to be presented correspond to a six-mode solution, unless stated

otherwise.
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Figure 7: Phase portrait of generalized coordinates: convergence study for nominal

configuration (numbers identify the trajectories of different degrees of free-

dom).
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Figure 8: Panel displacement at the points in time of maximum deflections: nominal

configuration, six-mode solution and _ = 450.

The panel motion is illustrated in Figure 8 at two different times for the case

of Figure 7b), that is, )_ = 450. The points in time correspond to the maximunl

deflections (positive and negative) of the limit cycle. The motion resembles clas-

sical panel flutter, Reference [49], with the distinguishing difference that the point

of zero deflection is closer to the center of the panel. This is obviously due to the

contribution of the second mode, which also moves the point of maxinmm deflec-

tion farther back (_ _ 0.8). It should be emphasized that, due to the amplitude

asymmetry, the points of maximum deflection along the panel for the positive and

negative peaks are slightly different.

4.2 Initial Conditions: Nonuniqueness

Before any further analysis of the phenomenon, it is necessary to say something

about the dependence of the solutions on the initial conditions. If ql(0) 7_ 0, with

all the other initial conditions set to zero, this dependency can be partially seen by

analyzing the time histories for different values of ql(0), Figure 9. Note that the
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Figure 9: Time histories of the first generalized coordinate ql" nominal configura-

tion, A = 312.3 and zero structural damping.
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Figure 9: (cont.) Time histories of the first generalized coordinate ql: nominal

configuration, A = 312.3 and zero structural damping.
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solutions were computed with zero structural damping in order to pernfit a l)('tter

visualization. Also, A = 312.3 corresponding to a value just above the lim'ar flllttcr

boundary. In spite of the quite different nature of the time histories, it can be seen

that some kind of modulation exists, especially for the cases of ql(0) = 0.0001 and

0.01. If the frequency content of these curves is analyzed, one finds that the power

spectra of the generalized coordinates have very distinct peaks for two different

values of frequency, which get closer together as q1(0) decreases. The first peak is

generally greater than the second one, with the difference between them increasing

for larger values of ql(0). Actually, for the cases of ql(0) = 0.0001 ;,11_l 1 thor,, is

essentially just one peak in the power spectra of ql if they m'c not ph,ttcd using _

logarithm scale. For ql(0) = 0.0001 this happens because the peaks arc to{_ <'h_sc

together, corresponding to a nondimensional frequency of 5.596 (_f = 0.098). For

q_(0) = 1 the second peak is much smaller (two orders of magnitude) than the

first one at f = 4.958. The dependency on the initial conditions is revealed even

better, however, if the corresponding phase portraits are examined (Figure 10).

It is important to point out that these results get much more compi_,x ;_s .\ is

further increased, with a FFT analysis of the motion showing ;_n incr,._sil_gly l_r,_;l(t

spectrum of frequencies.

The next step consists of ascertaining the influence of structural dmnping on

the flutter boundary, as well as on the limit-cycle solutions. Regarding the latter,

once structural damping is introduced in the system solutions for the various initial

conditions (with the dynamic pressure parameter being hold constant), all converge

to the same limit cycle, except for the case ql(0) = 1. Figure 11 sh(m's th(, phase

portraits of the generalized coordinates for the two kinds of limit cycl,'s ,,I,t;_in,.<l.

The different values of A correspond to solutions that yield al)proxinmtcly the same

value of the maximum positive deflection at ( = 0.75. Again the numl)ers close t<,

the curves indicate the generalized coordinates. Solution type I corresl)onds to the

basic solution discussed in the last section. Solution type II represents a nmch more

complex limit cycle, with the panel attaining much larger deflections: a maxinmm

positive deflection at _ = 0.75 of 0.3100 versus 0.0024 for the other solution when

A = 312.3. Also, this second kind of solution has a fl'equcncy content rich_,r tlia,li th,,
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Figure 10: Phase portraits of the first generalized coordinate ql: nominal configu-

ration, A = 312.3 and zero structural damping.
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Figure 10: (cont.) Phase portraits of the first generalized coordinate qx" nominal

configuration, A = 312.3 and zero structural daxnping.
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Figure 11: Phase portraits of the generalized coordinates: nominal configur_tion

and (1 = 0.01 (numbers identify the trajectories of different degrees of

freedom).
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first one. Interesting to note is that the main harmonics are at 5.614 and 5.003 for

solution types I and II, respectively. They compare very nicely with the frequencies

obtained for the cases ql(0) = 0.0001 and 1 when the structural damping was taken

as zero. For the rest of the analysis in this chapter it is going to be assumed that the

type-I limit cycle is the significant solution. This decision was based on two facts'

1) ql(0) = 1 is quite a large "disturbance", and 2) the type-II limit-cycle solution is

not "robust" in the sense that such a solution cannot always be obtained for a giwm

A if the initial conditions are the ones corresponding to the same kind of solution

for a different value of the dynamic pressure parameter in the neighborhood of A.

The type-I limit cycle is robust in this sense.

Going back to the question of how the flutter boundary is affected by the mag-

nitude of the structural damping, Figure 12 shows that this influence is minimal fin.

values of ¢1 < 0.01. This is interesting because physically one would expect the ac-

tual structural damping ¢_ to be of order 0.001 or smaller. A value of _1 = 0.01 was

used in all the results to be shown in this chapter in order to make the numerical

calculations converge faster. It is worth pointing out that larger values of 41 lead to

larger values of A_, as discussed in Section 2.3. For example, A_,0=0.000s = 312.286

as compared to the value of 312.296 given previously.

4.3 Effects of Aerodynamic Parameters

There are basically three aerodynamic parameters in the present problem: 1) the

Math number M_, 2) the temperature ratio ®, and 3) the momentum accommoda-

tion coefficient am. The mass ratio # could also have been included, but in the case

of free-molecule flow it is too small to be of significance. The Math number and

mass ratio only appear as the combination p/M_ when piston theory is used. This

is no longer true for free molecule flows, with the coefficient .,43 being proportional

to the Math number, equation (83).
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Figure 12: Effect of structural damping on the flutter characteristics: nominal

configuration.
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Figure 13: Influence of the temperature ratio 19 on tile linear flutter l_mmncter A_.,.,

and comparison with piston theory results.

Comparison with piston theory results are shown in Figure 13 for the linear

flutter parameter. The figure also shows how the free-molecule ,_cT varies with

the temperature ratio for the two limiting cases of o_m = 0 and 1. Note that in

the latter case, when all the molecules are reflected specularly from the panel, the

flutter condition is independent of @. It is clear that the comparison between piston

theory results and those obtained using the present rarefied fi)rmulati(m is highly

dependent on the values of @ and am specified. The fact that ,_c_ decreases with 19

for am < 1 should have been expected, since an increase in the temperature ratio

implies an increase in the pressure load, as indicated by the expressions for .A1 and

A2, equations (81) and (82).

The effect on the linear flutter parameter of varying am is shown in Figure 14.

The first thing that strikes one is that the curves are nearly straight lines for high

enough values of the temperature ratio. This means that it may sufficiently accm'at, e

during a design process to only compute two points in the curve, and use them to

estimate )_T for different values of am. It is suggested in the literature that values

in the vicinity of 0.2 lead to better agreement with experimental results. Another
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Figure 14: Influence of the momentum accomodation coefficient o'm on the linear

flutter parameter £cT-

point is that the slopes of the curves in Figure 14 depend on the value of O which

is assumed. In fact, this could have been realized from Figure 13 since the frec-

molecule curves shown there represent limiting cases; that is, given a value of O, AcT

for an arbitrary value of am must lie between the curves for (_m = 0 and a,, = 1.

This gives rise to a curious observation: there is a value of the temperature ratio

(19 _ 5.6) for which )_c, is independent of am.

Finally, Figure 15 gives the variation of the linear flutter parameter with Mach

number. It is seen that £c_ monotonically decreases with decreasing M_. If the

effect of the terms associated with .42 and ,44 is neglected, which is a reasonable

assumption due to the small value of the mass ratio, this trend makes sense in view

of the fact that .Aa decreases with a decrease of the Mach number, and that the

shear stress stabilizes the system. In the case of linear piston theory, £_ increases

when M_ decreases for a fixed value of the mass ratio, that is, the trend is the

opposite one.
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Figure 15: Influence of the Mach number Moo on the linear flutter parameter Ac_.

4.4 Effects of Structural Parameters

Three set of parameters are included in this category: 1) tile "spring support t)aram-

eters" c_k, , 2) the applied compression parameter R_, and 3) the pressure differential

parameter Pz.

In the first case, it is assumed that the panel is supported at leading and trailing

edges by springs oriented longitudinally, such as to idealize flexibility in adjacent

panels or the underlying structure. In classical panel flutter the presence ¢_f"such

springs alters tim limit-cycle amplitude but not tile linear flutter parameter. That is,

only the supercritical characteristics of the panel are modified. In the present case

the behavior is quite different because of the distributed tangential loads, especially

P_. Under such a uniform distributed load, and for both ends fixed in the x direction,

half of the panel is under tension (front), while the other half is under compression

(back). When the trailing edge is supposed to have a spring attached to it (oc< = 1,

c% < 1), the smaller the spring constant, the larger the tension regioll ahmg the

panel. This appreciably stabilizes the system, as can be seen fi'om Figure 16. On the

other hand, when only the leading edge spring exists (a.< < 1, ak_ = 1) the behavior
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Figure 16: Influence of the spring support parameters ak, on the linear flutter

parameter Ac_.

changes. Now the smaller the spring constant, the larger the compression region,

and the system is destabilized. However, the rate of decrease of Ac_ is much smaller

than the rate of increase of Ac_ in the first case. Finally, it is shown in Appendix

B that the value of the linear flutter parameter for an arbitrary combination ak,,

otk2 can be found by considering the appropriate case where only the front spring

or the back spring exists, depending whether akl > o_k_ or not.

Before commenting on the influences of other parameters, it is interesting to

analyze the behaviors of the system when the a_. are varied for different values of

the temperature ratio 19. In order to do this it is useful to define two new variables:

(S7)
A -- Anom, 0 + 1 and A_ - Anom,OAO -- _nom,O = 3.5

where Anom,O corresponds to the value of Ac_ for the nominal configuration but a

given value of O. Note that the second variable corresponds to a normalization of

the dynamic pressure parameter for each different temperature ratio. On the other

hand, the first variable is nothing more than a translation in the origin of the A

scale, plus a normalization with respect to the nominal configuration. This last

normalization is done only to make it possible to plot the flutter boundaries using
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the same scale for both )_o and )_. One should realize that A_=3.5 and .ko=3.5 are

the same variable. Figure 17 shows how the linear flutter parameter varies with

the spring support parameters using these variables as the ordinate. Three values

of the temperature ratio were investigated, O = 1.5, 3.5, and 6.0. It is very clear

that the use of A_ brings the flutter boundaries closer together, especially the lower

curves corresponding to ak_ < 1, ak2 = 1. Also, note that the flutter boundaries are

steeper for smaller values of the temperature ratio.

The behavior of the system in the presence of applied compressive loads, R_ < 0,

is illustrated in Figure 18. It resembles very much the kind of results obtained in

classical panel flutter, with a distinguishing difference associated with the buckling

boundary. As mentioned before, for a given set of parameters in the case of a static

deflection, if q,, is a solution, - q, is not. Computations show that the positive-static

solution corresponding to a given )_ is smaller than the negative one (in absolute

value). Also, as -R_ increases beyond 7r2 this difference increases, with the static-

positive solution approaching zero earlier than the corresponding negative solution.

Both these effects are illustrated in Figure 19. Then for large enough values of

-R_ the solution becomes noticeably "unstable" for values of the negative static

deflection close to zero (Figure 20). The meaning for "unstable" here is that the

solution seems to be converging with time to a finite value, but it then goes to zero

in a relatively short interval. The interpretation of this result is that the system

tries to approach a negative deflection when the corresponding positive solution

has already become zero. Some disturbance then makes it "jump" from the former

to the latter. It should be mentioned that the behavior of the first generalized

coordinate (Figure 20) is typical of the entire motion.

Another interesting feature related to the action of compressive loads is illus-

trated in Figure 21, which is representative of points close to the intersection be-

tween the buckling and flutter boundaries, R_ _ - 33. The case shown in the figure

corresponds to a value of R_ slightly smaller than the one associated with the inter-

section between boundaries. Again the solution seems to be converging to a finite

value, but it then begins to vary rapidly. In this case it eventually would converge

to zero if the calculation were allowed to run for a longer time. However, if values



CHAPTER 4. RESULTS

4.0

3.0 _-

)_,e 2.0 -

1.0

0,0
0.5

I_°;15I. 0=3.5

'...cxkj = 1, ak2 < 1 0 = 6.0

"""., ,.

0.6 0.7 0.8 0.9

a) Shifted variable.

1.0

4.0

3.0

A_,. 2.0,0

1.0

I.... 0=1.51

I-O=3.51

I '"...akl = 1 , c_k2 < 1

?.-.._-._ -.-.-.?-..--..--,_ -._..--..=.-,----__

0.0 i I , , J i b i • t . , , i , , I i i i t

0.5 0.6 0.7 0.8 0.9 1.0
O_k_

b) Normalized variable.

Figure 17: Influence of the temperature ratio ® in the flutter boundaries when the

spring support parameters c_k, are varied.
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Figure 18: Influence of the applied compression parameter R_ on the linear flutter

parameter )_cr.

of -R. larger than the one corresponding to the intersection between boundaries

are used, a similar behavior can be noticed with the further complication that the

motion does not seem to subside. This failure to converge to rest can also happen

in the limit-cycle solution region, which was not the case for smaller values of - R_.

As discussed by Dowell and Ilgamov [591 there is the possibility that this motion is

an example of chaos.

The influence of the temperature ratio on the flutter boundaries is again inves-

tigated in Figure 22. As in the previous case (Figure 17) tile stability boundaries

come close together when the variable )_ is used to plot the curves. In fact, the sta-

bility boundaries for @ = 3.5 and 6.0 practically coincide. Another interesting point

is that the slope of the limit-cycle boundary, which is essentially linear, increases

as the temperature ratio increases in this case [Figure 22b)]. On the other hand,

this same slope decreases as 19 increases when )_ is used [Figure 22a)]. Basically

this means that one obtains conservative results if $c_ for any specified temperature

ratio is estimated using the value of "_,,e for the largest temperature ratio being

considered. In other words, the value of the linear flutter parameter for a given (9
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obtained using as an estimate A_,o for a larger temperature ratio is smaller than

the correct value.

Pressure differentials are specified by the parameter P_. A positive value corre-

sponds to a uniform static pressure difference between the panel sides in the positive

z direction, i.e., excess pressure in the interior. It can be seen from Figure 23 that

the flutter boundaries again approach each other if they are plotted using ,k_, i.e.,

their curvature are more nearly the same. As in the case of applied compressive

loads, a large temperature ratio yields smaller values of A_, o when compared with

the same results for a smaller temperature ratio. A new feature of the fiee-molccule

case compared to classical panel flutter is that the flutter boundary is no longer

symmetrical about its location for Pz = 0. An upward pressure (Pz = 0) causes

a somewhat lower increase in the linear flutter parameter than a downward pres-

sure. Finally, it should be recalled that in the presence of a pressure differential

the limit-cycle solution is "superimposed" upon a nonzero static deflection. At the

linear flutter condition Figure 24 shows that the deflection increases in absolute

value with increasing values of P_. It can also be seen that the static deflection is

essentially antisymmetric with respect to the line P_ = 0.

Finally, Figure 25 shows how the amplitude of the limit-cycle solution varies

for different values of the temperature ratio. In order to understand the plots in

the figure, it should be emphasized that none of the curves have the same value of

Ac,,o or .k_r,(_), as seems to be implied by the plots. This feature was arrived at by

appropriately translating the origins of the horizontal axes of the diagrams for the

different values of 19 in order to obtain a better visualization. This accounts for the

fact that there is no numbering in those axes. It can be seen from Figure 25 that

the limit-cycle amplitude increases faster with Ao the higher the temperature ratio

is, the difference in curvature being easily verified. However, if )_ is used instead

the curves are much closer together, especially for larger values of 19. The same

kinds of results are obtained if values of P_ ¢ 0 and ak, -fl 1 are used.
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4.5 Initial Curvature Effects

When incorporating the effects of initial curvature into the code, a comparison with

the results by Dowell [521 was performed to ensure the correct implementation of the

coefficients in the general equation of motion (43). As a direct result of this effort,

it was established that the problem becomes very sensitive to the initial conditions

as the maximum height of the panel, H, increases. Furthermore, the motion also

tends to be what Dowell called a "heavily modulated oscillating function" for large

values of the panel height. Most probably these motions constitute yet another

example of chaos. Because of this fact, the present study was limited to relatively

small values of the parameter H/h.

Only results for two kinds of initial curvature are analyzed here: 1) constant

curvature, and 2) half-sinusoidal curvature (w0 = H sin 7r(). In these cases the

undeformed shapes of the panel are not markedly different from each other. Ac-

cordingly, the bifurcation diagrams for both cases when H/h = 0.5 are similar, with

values of ,_cr close to each other (Figure 26). It should be noted that in both cases

the system is destabilized with respect to the flat panel problem. This is the same
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Figure 25: Influence of the temperature ratio O in the limit-cycle amplitude for

different values of Rx: Pz = 0 and ak, = 1.



4.5. INITIAL CURVATURE EFFECTS

0.40

0.20

0.00

-0.20

-0.40

-0.60

-0.80

= 0.75 _/

--- 8inusoidal curvature _ ,,,

,,,ll,,,,_ll,Jll,l,l,l,,_ .... i .... l ....

1_ 1_ 200 2_ 300 3_ 400
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trend obtained when linear piston theory is used. For small values of )_ the solution

corresponds to a static deflection due to the steady airloads caused by the panel

curvature. The deflection (from the initial curved shape) at the point _ = 0.75 is

initially positive but then becomes negative. The panel deformation is illustrated in

Figures 27 and 28 for two different values of )_ in each case. It can be seen from part

a) of the figures that a large portion of the panel is deflected downward (relative to

the initial curved shape) even for small values of the dynamic pressure parameter,

and that this deformation approaches a half-sine shape as A is increased. On the

other hand, if the deformation is superimposed to the initial shape [part b) of the

figures], it becomes clear that the panel starts fluttering when it is deformed to a

relatively flat geometry. In these conditions the compressive loads acting on the

panel are, most probably, considerable.

When the maximum height is further increased to a value of H/h = 1.0, the

behaviors of the system for the different eases of initial curvature are no longer very

similar, with the constant curvature panel having a much smaller value for ,_ (Fig-

ure 29). The static-deformation behavior of the panel resembles the one discussed

for H/h = 0.5. One complication now is that, once the panel starts fluttering,
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Figure 27: Static deflection of parabolic panel for H/h = 0.5.
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the solution becomes very sensitive to the initial conditions. Eventually there is a

change in the kind of the limit cycle achieved, even if ,k is increased through very

small increments.

The behavior of the system for a value of H/h = 2.0 is similar to the previous

case of H/h = 1.0, with a further separation between the values of _¢_ for the two

initial curvature cases discussed. It is interesting to observe, however, that the linear

flutter parameter has increased for both cases relative to the values corresponding

to the problem when H/h = 1.

In view of the foregoing results, any actual analysis in a design process should

be done assuming a parabolic shape, since this would give smaller values for the

linear flutter parameter, leading to conservative results. On the other hand, due to

the sensitivity of the results to the initial curved shape, one may wonder whether

there really is some meaning in doing this kind of analysis, especially because of

manufacturing restrictions on the panel final shape.
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4.6 Particle Simulation Method Application

In principle, the interaction between the structural code and tile aerodynamic one

can be implemented as in other recent aeroelastic applications which use Com-

putational Fluid Dynamics (CFD). The only question that should deserve some

investigation is the kind of numerical integrator to be used, since a Runge-Kutta-

like algorithm can no longer be used. However, this is not expected to be a serious

problem. Therefore, the major difficulty in applying a particle simulation method

to the present system has to do with CPU time requirements, since these methods

are very computationally intensive.

As mentioned before in Section 3.2.2, the CPU time can be assumed to be

directly proportional to the number of molecules and cells in the simulated flow.

Actually, the number of cells can be directly written in terms of number of time

steps. In the case of the schemes implemented by McDonald [1131 and Dagum [1141

(Stanford Particle Simulation Method) a time step in the code is typically of the

order of 1/3 of the cell size. Then, in order to obtain an estimate of tile CPU time
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requirements related to the present application it is useful to define a new time

variable:

t Uoo

a

O0 t --

a 4

= T pph p_a3U_ fAvMOO

"_ 1/. x

(88)

Note that t ° is a nondimensional time which measures how many panel chords have

been traveled. All symbols have been defined previously and can be identified from

their definitions in the Nomenclature. However, it should be recalled that 7- is the

nondimensional time used during the time integration.

A reasonable value of 7" to obtain a limit cycle solution, T_ol, cannot be expected

to be much less than 10. On the other hand, from the results previously presented

in this chapter it can be seen that the smallest possible value of A for a limit-cycle

solution is of order 100. Because of restrictions on the applicability of particle

simulation methods, the Mach number should not be taken much smaller than 10.

Assuming a value of A Moo = 103, one can obtain the total number of chords traveled

in order to ensure a converged flutter solution for different values of #, as shown in

Table 1.

Table 1: Variation with # of the number of chords traveled to achieve a limit-cycle

solution: A M_ = 103 and T_ol = 10.

I , I1 o [10-4 11o I 10 -T

[ chords traveled [] 104 13.16x104 [ lO s [3.16x10 s ] 10 s

The results in Table 1 can be put in terms of CPU time requirements. From

Dagum's work, CPU time requirements are of 2.0 #sec/particle/timestep when one
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uses the 32k processor Connection Machine, and 1.7 #sec/particle/timestep on

the Cray 2. It is reasonable to assume that this time has decreased to at most

1.0 #sec/particle/timestep on the Cray YMP; possibly a Connection Machine with

a larger number of processors would require similar times. The largest possible

number of particles should be used in order to assure time accurate results. On the

other hand, the number of cells along the panel should be large enough to avoid

excessive numerical errors when obtaining the aerodynamic generalized forces. A

reasonable grid could be one with 250 cells in the z direction (about 200 cells along

the panel), and 50 cells in the y direction. These values reflect the considerations

arrived at by Woronowicz [1151 in his applications of the Stanford Method. The

position of the wing leading edge, corresponding to the point where the boundary

layer starts developing, should be at least a few cells ahead of the actual panel

leading edge. On the other hand, the position of the wing trailing edge should be

specified in such a way to allow for a sufficient number of cells after it, because of

the subsonic region in the boundary layer. The extent of the grid in the y direction

is necessary to avoid spurious reflections of shock waves at the upper boundary, for

example. These values give a total number of 12,500 cells, and it follows that the

smallest reasonable number of particles is approximately 4 x 106, which allows for

approximately 300 particles/cell. In the ease of about 100 cells along the pauel,

which is a marginally small number, the number of particles might be decreased to

about 106 if all relative proportions are kept approximately constant. As mentioned

before, a typical time step is of the order of 1/3 of the cell size. With these con-

siderations, Tables 2 and 3 give Cray YMP CPU time requirements (in days) for

the cases of 100 and 200 cells along the panel. It is clear that only the applications

associated with the 100 cells case, and larger values of #, might become feasible if a

decrease of two order of magnitudes could be arranged. The values in these tables

were calculated by the following formula:

i0-6

CPU time - 24 x 3600 (no. of particles) x

x (value from Table 1) (3 x no. cells along the panel). (89)

Note that (value from Table 2) (3 x no. cells along the panel) gives the number
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Table 2: Variation with/_ of CPU time requirements (days) to achieve a limit-cycle

solution: A Moo = 103, T_ol = 10, and 100 cells.

{_ }{,03{104{,o_5{100{107I
{days{{347{,098{3472{1008{3472{

Table 3: Variation with/_ of CPU time requirements (days) to achieve a limit-cycle

solution: A Moo = 103, T_ol = 10, and 200 cells.

}_ {{,03{104{,0_{,00{10,{
{daysr{2778{8784r2778{8784r27778{

of time steps for T, ol = 10.

The first observation to be made if one is to investigate the possibility of smaller

CPU times is that the values in Tables 2 and 3 are proportional to k/A M_/p. This

is the parameter in the estimates which may be directly affected by the panel's

characteristics (material properties). However, since it is obtained fl'om nondimen-

sional parameters of the panel flutter problem, a change in the stiffness of the panel

for example is not reflected in _/A M_o/#, and consequently in the CPU time re-

quirements. Naturally, the physical time t is greatly affected. On the other hand, a

lighter material makes larger values of # more reasonable. As a limiting case, con-

sider corkwood, which has a density of approximately 0.21 g/cm 3. This corresponds

to almost a two-order-of-magnitude decrease when compared with the value of 8.20

g/cm 3 for Ren_ 41. If an altitude of 95 km is assumed instead of 110 km, which

was used in the calculations shown in this chapter, a further decrease of two orders

of magnitude is obtained. This makes a value of # = 10 -4 "reasonable", but there

is little hope of managing to decrease the CPU time with a further decrease in #

and still have some physical material. Since the value of M_ is also "fixed" close

to 10, only A remains to be varied, that is, for smaller values of CPU time A should
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be decreased. Of all the nondimensional parameters involved in the panel flutter

calculations, only four of them lead to a decrease of the linear flutter parameter

for the flat panel problem. They are the Mach number, the temperature ratio, the

spring parameter on the leading edge, and the applied compression parameter. By

far the most strong influence is related to increasing 0. A complete study was done

in order to find conditions which would lead to smaller value of A, but the minimum

value obtained for Act was approximately 35.1 This is almost a decrease of one order

of magnitude in A, but it is definitely inadequate since CPU times are proportional

to v_.

The final conclusion of this brief investigation is that, until supercomputer speeds

are increased by a factor of at least 100 it will be infeasible to carry out flutter

calculations with particle-method aerodynamics.

1A value of the temperature ratio of 36 was used, which at the assumed altitude of 95 km means

that the panel temperature is of the order of 6,780° K _ 6,500 ° C _ 11,700 ° F. This is quite high
to say the least.
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FINAL REMARKS

The main accomplishment of this work corresponds to the finding that aerodynamic

shear effects are considerable in the rarefied (free-molecule) flow analyzed. Here the

ratio between shear stress and pressure, for both steady and unsteady parts of

the loading (up to first order), is of order of Mach number (see page 34). One

consequence of including the aerodynamic shear loading is to stabilize the panel

response, with an increase of the linear flutter parameter t of 53% relative to the

pressure only value in the case of the nominal configuration specified in Section

4.1. Using results given in Section 6.5 of the book by Anderson [122], it is possible

to show that in the case of a flat plate r/po_ " M_/Rx/-_. 'Here r is the value

of the steady shear stress at a given point of the plate, poo is the st_ttic pressure

corresponding to the freestream, and Rex is the Reynolds number based on the

coordinate x measured from the leading edge of the plate. Then, depending on

the position of the panel relative to the leading edge of the wing and the value

of the Mach number, the ratio r/po_ may be large enough to change the flutter

characteristics of the panel significantly.

A convergence study regarding the number of modes to be used in the Galerkin

method showed that a six-mode solution leads to converged results. Up to 12

modes we're used in this research. The motion resembles continuum panel flutter,

tThis parameter corresponds to the dynamic pressure parameter at the linear flutter boundary,
that is, a limit cycle of zero amplitude.



with the distinguishing difference that the point of zero deflection (the node of

the flutter mode) is closer to the center of the panel. The point of maxinmm

deflection is also slightly farther back (_ _ 0.8). Both these changes are a direct

consequence of the fact that the second mode is the dominant one, as opposed to

the first mode in the case of classical panel flutter. It is believed that this happens

because of the interaction between flutter and buckling in the presence of a unifi_rnfly

distributed longitudinal load. Finally, it must be mentioned that the limit-cycle

peak amplitudes are slightly asymmetric due to the unsteady longitudinal load.

Some key findings about the effects of the several parameters considered are as

follows:

Temperature ratio @ = Tp/Too: this is the ratio of panel temperature to that

of the freestream flow. The larger O, the larger are the aerodynamic i)resstu'es.

Accordingly, the linear flutter parameter decreases with increasing (-), all other

parameters being fixed. Their relationship may be quite nonlinear.

"Momentum accommodation coefficient" a,_: this number gives the fraction of

molecules which reflects specularly upon collision with the panel. A value of 0

implies that all collisions contribute to aerodynamic shear, with the molecules

being reemitted in random or "diffuse" fashion according to the temperature of

the panel. Calculations show that the variation of the linear flutter parameter

with a,_ is close to linear if the temperature ratio is sufficiently l_rge. In the

case of the nominal configuration specified in Section 4.1, this comes about

values larger than @ = 3.5.

Mach number M_o: the linear flutter parameter decreases monotonically with

decreasing Math number. This is contrary to the case of continuum flow

if linear piston theory is used, where increasing the Mach number leads to

smaller values of the linear flutter parameter.

Spring support parameters c_k,: in this analysis it is assumed that the panel

is supported at leading and trailing edges by springs oriented longitudinally,

with spring constants kl and /% respectively. In classical panel flutter, such
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springs would affect only the supercritical limit-cycle amplitude. However,

their presence also changes the linear flutter parameter in free-molecule flow

because of the influence of distributed longitudinal loads representing the

aerodynamic shear. The panel is strongly stabilized if only the spring at the

trailing edge is considered, the effect being the opposite if only the leading

edge spring constant is varied. However, the rate of decrease of the linear

flutter parameter is not as large as the rate of increase in the former case.

Applied compression parameter Rx: this quantity relates the compressive end-

load to its value that gives rise to classical column buckling. It has been found

that the relationship between the flutter boundary and the buckling boundary

does not change much from that which is typical of continuum panel flutter.

Naturally, numerical values are different from case to case.

Pressure differential parameter Pz: this corresponds to a uniform static pres-

sure difference between the panel's sides. An upward pressure (i.e., excess

pressure in the interior) is associated with Pz > O. Regardless of the direction

of the force, there is an increase in the linear flutter parameter with Pz- The

new feature of the free-molecule case is that the stability-boundary location is

no longer symmetrical about the line Pz = O, with an upward pressure causing

a somewhat lower change than a downward pressure.

Initial curvature: the amount of curvature is specified by the ratio between

the panel's maximum initial height and its thickness, H/h. Both a sinusoidal

and a constant (parabolic) curvature panel were considered. For small values

of H/h the flutter solutions for the two different cases are very similar. How-

ever, for larger values of H/h the linear flutter parameter for the two kinds of

curvature can be significantly different. This effect is already noticeable for a

value of H/h = I in the cases that were studied in Chapter 4. The parabolic

panel leads to smaller values of the linear flutter parameter, and so this kind

of initial shape should be used in a design process if one would prefer t_ be

on the conservative side. This last remark is made in view of the fact that

the two shapes are not markedly different, with a maximum difference in their



ordinates of about 10% relative to H. Accordingly, for a very shallow curved

panel (small ratio between the panel's thickness and length) it may be unre-

alistic to try to distinguish between one and the other due to manufacturing

restrictions.

There is a substantial effect of the temperature ratio on the location of the sta-

bility boundaries for parametric studies related to the parameters o_k,, R_, and P_.

Different locations can, however, be "collapsed" onto one another by using as ordi-

nate an appropriately normalized dynamic pressure parameter, given by equation

(87). This works better for higher values of the temperature ratio. In most cases the

linear flutter parameter obtained using this normalized definition decreases with in-

creasing O. This implies that conservative results (smaller values) can be obtained

using as an estimate the linear flutter (normalized) parameter corresponding to

the highest temperature ratio to be considered, and then transforming it for each

specific case of ®.

Finally, a brief investigation was conducted on the feasibility of using a particl<-

simulation method to obtain the aerodynamic loads. This resulted in the conclu-

sion that such calculations can only become possible with a two orders of magnitude

increase above the present speeds of supercomputers. Such a study would consti-

tute a natural extension of the foregoing work, filling the gap between continuum

and free-molecule flow. It is, therefore, recommended to a future generation of

aeroelasticians.



Appendix A

GALERKIN INTEGRALS AND

COEFFICIENTS

A.1 Sine and Cosine Integrals

Some of the necessary integrals in the evaluation of the Galerkin coefficients are:

l°1. I0=f0 sinnrr(cosm_r_dx=

1 ,_ [1-(-1) _+_]
7r n 2 -- m 2

; n#m

1

sin nTr_ sin mTr( dx = I

1

4

2 m/2

•Tr2 (n2-m2) 2 [1-(-1)m+"]
; l_/ ¢ 77l

1

fo 4nTr ; n=m3. I 1 = _ sinnTr( cosmrr_dx =

1 n
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A.2 Galerkin Coefficients

Assuming that the parameter p specifies the kind of initial deformation, with p = 0

corresponding to the constant curvature case, and p > 0 to the pth sine curve, the

coefficients specified in equation (43) are given by

[ 1( )x. a.= (n,_)2+_ 1-2 _k +_k P_+Rx+-- 5-

where

. H 1-(-1) p

_ .a_ -_ ---_--#- -
anp -_-

2 . HI 3

5 A3-_-[ ak-1 ?n_)2

; p>0

; p=0

2. a_,_ = 3ak(1 - u2)(rTr) _ (n_r)2
2

( -.)3. a';=_k _431--(--1)r+a.p_--
r_r

where

r/Tr)

H

6-h--(1-u2)(rTr)25_ p ; p>0
<;_ =

H (1 - v 2) 1 - (-1) r
96 _ rrr ; p = 0



A.2. GALERKIN COEFFICIENTS

FT/" Olkl FTF

(//2+1922_2 P= - A,)
5. b,m

: mn [1 - ( 1 ,

where

H

+ 3_ -K(1 - .2)(m_)_ _._.(_)2 _,,_+

n2 rnn

; p>O

; p--O

6. b:m r = _r Mz mnr - n2 + m_ - r2

H

- ," rtr_p

where

b::: [ s_-(-1)0_)-_""° ; p>o
n_ ; p=O



[-_ APPENDIX A. GALERKIN INTEGRALS AND COEFFICIENTS

.A 2 7r28. c,,- + _l
2

(7) mn [1_ (_l)m+_]+ .a4g_c..,p +9. C.m : -- rt 2 _ m2

H [ (-1) m-.A4--h-- (1-_k) m-7
c_k,-1 1-(-1)_1

CnpO_k
JOl k l rrt Tr

where

Cnmp

n2+m 2 1- (-1) m+"

+ _)_,.,._.<] ; p> o

; p=O

__'nTr'2a,_p ; p>0
2

s1-(-1)" ; p=o
nTl-

10.



A.2. GALERKIN COEFFICIENTS

1 - (-1)" H
11. d, = Pz d,,p ,

n_" h

where

drtp -_-

7rA3 H nP 2 [1- (_l)n] +
h n 2 _--_p2

("_ } [1 - (-1)"+.] +
+ p2 \

+ -__p2P_-A,/ n2--_
np

{1( )+ 1-2 ak +ak P_+
O/k_

+ R_ + Aa o_k h pn + 2

4(P. - A,) _+ (-_)" + s & +
rtTr /2 71"

+ 4 Aa --_- +1

_Snp ; p>0

; p=O



Appendix B

LONGITUDINAL SPRINGS

EFFECTS

The influence of the longitudinal springs on the linear flutter parmneter is given by

the term multiplying P, on the expression for an in Appendix A, which is

.?-(1-2 ak )-- _+ak
OCk I

Assume ak_/ab = C. Then ak can be rewritten as

ak, (90)Ot k ----

_k2 (91)
C" + 1 -ak2

where C" = 1/C. _ can then be expressed in terms of ak_ or ak2 alone:

C-1
.T = = (92)

C + 1 - ak,

1-C*
(93)

C* + I - ak2

First thing to note is how .f and ak vary when the value of C changes. Then

1. C>I =_ akl >ak2. Then: 0<.T'<I andak <ak,.



2. C < 1 => ak2 >akl- Then: -1 < 3v<0 and ak < ak2.

Secondly, the value of Act for an arbitrary combination akl, ak2 can be found by

considering one of the limiting cases _kl = 1, _k2 < 1 or _k2 = 1, _k, < 1, depending

whether ak, > ak2 or not. Here (':) indicates an equivalent problem with different

values for ak,.

1. ak_ >ak_ =_ Hk_ = 1, _k_ = 1/C

The value of C can be found by equating .T and .T, that is,

C-1 _-1

C + 1 - ak, C

Then

o,k, - 2 (94)
ak2 C'+ 1 - (_kl

It can also be shown that ok < _k, which implies that the limit-cycle ampli-

tude for the pair 0%, o_k_ is larger than the one corresponding to 7_kl, _k_ if X

is held constant.

2. ak, <ak2 _ _k2 =1, _k, = 1/C*

The value of _k_ can be found as in the previous case, except that now .T and

should be written in terms of ak2- Then

c_k_ - 2 (95)
ak, - C'+l--ak_

Again it can be shown that the limit cycle amplitude for the pair ak_, ak_ is

larger than the one corresponding to _kl, _k2 if _ is held constant.
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the panel, molecules may be reflected specuiarly or reemitted in diffuse fashion. Two parameters characterize this process:
the "momentum accommodation ¢oefficie_', which is the fraction of the speculerly reflected molecules; and the ratio
between the panel temperature and that of the free airstream. This modal is relevant to the case of hypersonk: flight
vehicles traveling at very high altitudes and especially for panels oriented parallel to the air=ream or in the vehicle's lee.
Several parametric studies are presented. They include the effects of 1) temperature ratio; 2) momentum accommodation
coefficient; 3) spring parameters, which are associated with how the panel is connected to adjacent structures; 4) a
parameter which relates compressive end load to its value which would cause classical column budding; 5) a parameters
proportional to the pressure differential between the front and back faces; and 6) instal curvature. The research is
completed by an investigation into the possibility of accounting for molecular collisions, which proves to be infeasible given
the speeds of current mainframe supercomputers.
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